Kuaishou Technology
Abstract:In online video platforms, accurate watch time prediction has become a fundamental and challenging problem in video recommendation. Previous research has revealed that the accuracy of watch time prediction highly depends on both the transformation of watch-time labels and the decomposition of the estimation process. TPM (Tree based Progressive Regression Model) achieves State-of-the-Art performance with a carefully designed and effective decomposition paradigm. TPM discretizes the watch time into several ordinal intervals and organizes them into a binary decision tree, where each node corresponds to a specific interval. At each non-leaf node, a binary classifier is used to determine the specific interval in which the watch time variable most likely falls, based on the prediction outcome at its parent node. The tree structure serves as the core of TPM, as it defines the decomposition of watch time estimation and determines how the ordinal intervals are discretized. However, in TPM, the tree is predefined as a full binary tree, which may be sub-optimal for the following reasons. First, a full binary tree implies an equal partitioning of the watch time space, which may struggle to capture the complexity of real-world watch time distributions. Second, instead of relying on a globally fixed tree structure, we advocate for a personalized, data-driven tree that can be learned in an end-to-end manner. Therefore, we propose PTPM to enable a highly personalized decomposition of watch estimation with better efficacy and efficiency. Moreover, we reveal that TPM is affected by selection bias due to conditional modeling and devise a simple approach to address it. We conduct extensive experiments on both offline datasets and online environments. PTPM has been fully deployed in core traffic scenarios and serves more than 400 million users per day.
Abstract:Large Language Models (LLMs) have garnered significant attention in Recommendation Systems (RS) due to their extensive world knowledge and robust reasoning capabilities. However, a critical challenge lies in enabling LLMs to effectively comprehend and extract insights from massive user behaviors. Current approaches that directly leverage LLMs for user interest learning face limitations in handling long sequential behaviors, effectively extracting interest, and applying interest in practical scenarios. To address these issues, we propose a Hierarchical Tree Search-based User Lifelong Behavior Modeling framework (HiT-LBM). HiT-LBM integrates Chunked User Behavior Extraction (CUBE) and Hierarchical Tree Search for Interest (HTS) to capture diverse interests and interest evolution of user. CUBE divides user lifelong behaviors into multiple chunks and learns the interest and interest evolution within each chunk in a cascading manner. HTS generates candidate interests through hierarchical expansion and searches for the optimal interest with process rating model to ensure information gain for each behavior chunk. Additionally, we design Temporal-Ware Interest Fusion (TIF) to integrate interests from multiple behavior chunks, constructing a comprehensive representation of user lifelong interests. The representation can be embedded into any recommendation model to enhance performance. Extensive experiments demonstrate the effectiveness of our approach, showing that it surpasses state-of-the-art methods.
Abstract:Reinforcement learning (RL) has emerged as a pivotal method for improving the reasoning capabilities of Large Language Models (LLMs). However, prevalent RL approaches such as Proximal Policy Optimization (PPO) and Group-Regularized Policy Optimization (GRPO) face critical limitations due to their reliance on sparse outcome-based rewards and inadequate mechanisms for incentivizing exploration. These limitations result in inefficient guidance for multi-step reasoning processes. Specifically, sparse reward signals fail to deliver effective or sufficient feedback, particularly for challenging problems. Furthermore, such reward structures induce systematic biases that prioritize exploitation of familiar trajectories over novel solution discovery. These shortcomings critically hinder performance in complex reasoning tasks, which inherently demand iterative refinement across ipntermediate steps. To address these challenges, we propose an Intrinsic Motivation guidEd exploratioN meThOd foR LLM Reasoning (i-MENTOR), a novel method designed to both deliver dense rewards and amplify explorations in the RL-based training paradigm. i-MENTOR introduces three key innovations: trajectory-aware exploration rewards that mitigate bias in token-level strategies while maintaining computational efficiency; dynamic reward scaling to stabilize exploration and exploitation in large action spaces; and advantage-preserving reward implementation that maintains advantage distribution integrity while incorporating exploratory guidance. Experiments across three public datasets demonstrate i-MENTOR's effectiveness with a 22.39% improvement on the difficult dataset Countdown-4.
Abstract:Auto-bidding, with its strong capability to optimize bidding decisions within dynamic and competitive online environments, has become a pivotal strategy for advertising platforms. Existing approaches typically employ rule-based strategies or Reinforcement Learning (RL) techniques. However, rule-based strategies lack the flexibility to adapt to time-varying market conditions, and RL-based methods struggle to capture essential historical dependencies and observations within Markov Decision Process (MDP) frameworks. Furthermore, these approaches often face challenges in ensuring strategy adaptability across diverse advertising objectives. Additionally, as offline training methods are increasingly adopted to facilitate the deployment and maintenance of stable online strategies, the issues of documented behavioral patterns and behavioral collapse resulting from training on fixed offline datasets become increasingly significant. To address these limitations, this paper introduces a novel offline Generative Auto-bidding framework with Value-Guided Explorations (GAVE). GAVE accommodates various advertising objectives through a score-based Return-To-Go (RTG) module. Moreover, GAVE integrates an action exploration mechanism with an RTG-based evaluation method to explore novel actions while ensuring stability-preserving updates. A learnable value function is also designed to guide the direction of action exploration and mitigate Out-of-Distribution (OOD) problems. Experimental results on two offline datasets and real-world deployments demonstrate that GAVE outperforms state-of-the-art baselines in both offline evaluations and online A/B tests. The implementation code is publicly available to facilitate reproducibility and further research.
Abstract:Modeling holistic user interests is important for improving recommendation systems but is challenged by high computational cost and difficulty in handling diverse information with full behavior context. Existing search-based methods might lose critical signals during behavior selection. To overcome these limitations, we propose CHIME: A Compressive Framework for Holistic Interest Modeling. It uses adapted large language models to encode complete user behaviors with heterogeneous inputs. We introduce multi-granular contrastive learning objectives to capture both persistent and transient interest patterns and apply residual vector quantization to generate compact embeddings. CHIME demonstrates superior ranking performance across diverse datasets, establishing a robust solution for scalable holistic interest modeling in recommendation systems.
Abstract:Multi-modal sequential recommendation systems leverage auxiliary signals (e.g., text, images) to alleviate data sparsity in user-item interactions. While recent methods exploit large language models to encode modalities into discrete semantic IDs for autoregressive prediction, we identify two critical limitations: (1) Existing approaches adopt fragmented quantization, where modalities are independently mapped to semantic spaces misaligned with behavioral objectives, and (2) Over-reliance on semantic IDs disrupts inter-modal semantic coherence, thereby weakening the expressive power of multi-modal representations for modeling diverse user preferences. To address these challenges, we propose a Behavior-Bind multi-modal Quantization for Sequential Recommendation (BBQRec for short) featuring dual-aligned quantization and semantics-aware sequence modeling. First, our behavior-semantic alignment module disentangles modality-agnostic behavioral patterns from noisy modality-specific features through contrastive codebook learning, ensuring semantic IDs are inherently tied to recommendation tasks. Second, we design a discretized similarity reweighting mechanism that dynamically adjusts self-attention scores using quantized semantic relationships, preserving multi-modal synergies while avoiding invasive modifications to the sequence modeling architecture. Extensive evaluations across four real-world benchmarks demonstrate BBQRec's superiority over the state-of-the-art baselines.
Abstract:Cascade Ranking is a prevalent architecture in large-scale top-k selection systems like recommendation and advertising platforms. Traditional training methods focus on single-stage optimization, neglecting interactions between stages. Recent advances such as RankFlow and FS-LTR have introduced interaction-aware training paradigms but still struggle to 1) align training objectives with the goal of the entire cascade ranking (i.e., end-to-end recall) and 2) learn effective collaboration patterns for different stages. To address these challenges, we propose LCRON, which introduces a novel surrogate loss function derived from the lower bound probability that ground truth items are selected by cascade ranking, ensuring alignment with the overall objective of the system. According to the properties of the derived bound, we further design an auxiliary loss for each stage to drive the reduction of this bound, leading to a more robust and effective top-k selection. LCRON enables end-to-end training of the entire cascade ranking system as a unified network. Experimental results demonstrate that LCRON achieves significant improvement over existing methods on public benchmarks and industrial applications, addressing key limitations in cascade ranking training and significantly enhancing system performance.
Abstract:Integrated Sensing and Communication (ISAC) has emerged as a key enabler for future wireless systems. The recently developed symbol-level precoding (SLP) technique holds significant potential for ISAC waveform design, as it leverages both temporal and spatial degrees of freedom (DoFs) to enhance multi-user communication and radar sensing capabilities. Concurrently, reconfigurable intelligent surfaces (RIS) offer additional controllable propagation paths, further amplifying interest in their application. However, previous studies have encountered substantial computational challenges due to the complexity of jointly designing SLP-based waveforms and RIS passive beamforming. In this paper, we propose a novel model-driven learning approach that jointly optimizes waveform and beamforming by unfolding the iterative alternative direction method of multipliers (ADMM) algorithm. Two joint design algorithms are developed for radar target detection and direction-of-arrival (DoA) estimation tasks in a cluttered RIS-ISAC system. While ensuring the communication quality-of-service (QoS) requirements, our objectives are: 1) to maximize the radar output signal-to-interference-plus-noise ratio (SINR) for target detection, and 2) to minimize the Cram\'{e}r-Rao bound (CRB) for DoA estimation. Simulation results verify that our proposed model-driven learning algorithms achieve satisfactory communication and sensing performance, while also offering a substantial reduction in computational complexity, as reflected by the average execution time.
Abstract:Discrete tokenizers have emerged as indispensable components in modern machine learning systems, particularly within the context of autoregressive modeling and large language models (LLMs). These tokenizers serve as the critical interface that transforms raw, unstructured data from diverse modalities into discrete tokens, enabling LLMs to operate effectively across a wide range of tasks. Despite their central role in generation, comprehension, and recommendation systems, a comprehensive survey dedicated to discrete tokenizers remains conspicuously absent in the literature. This paper addresses this gap by providing a systematic review of the design principles, applications, and challenges of discrete tokenizers. We begin by dissecting the sub-modules of tokenizers and systematically demonstrate their internal mechanisms to provide a comprehensive understanding of their functionality and design. Building on this foundation, we synthesize state-of-the-art methods, categorizing them into multimodal generation and comprehension tasks, and semantic tokens for personalized recommendations. Furthermore, we critically analyze the limitations of existing tokenizers and outline promising directions for future research. By presenting a unified framework for understanding discrete tokenizers, this survey aims to guide researchers and practitioners in addressing open challenges and advancing the field, ultimately contributing to the development of more robust and versatile AI systems.
Abstract:Search advertising is essential for merchants to reach the target users on short video platforms. Short video ads aligned with user search intents are displayed through relevance matching and bid ranking mechanisms. This paper focuses on improving query-to-video relevance matching to enhance the effectiveness of ranking in ad systems. Recent vision-language pre-training models have demonstrated promise in various multimodal tasks. However, their contribution to downstream query-video relevance tasks is limited, as the alignment between the pair of visual signals and text differs from the modeling of the triplet of the query, visual signals, and video text. In addition, our previous relevance model provides limited ranking capabilities, largely due to the discrepancy between the binary cross-entropy fine-tuning objective and the ranking objective. To address these limitations, we design a high-consistency multimodal relevance model (HCMRM). It utilizes a simple yet effective method to enhance the consistency between pre-training and relevance tasks. Specifically, during the pre-training phase, along with aligning visual signals and video text, several keywords are extracted from the video text as pseudo-queries to perform the triplet relevance modeling. For the fine-tuning phase, we introduce a hierarchical softmax loss, which enables the model to learn the order within labels while maximizing the distinction between positive and negative samples. This promotes the fusion ranking of relevance and bidding in the subsequent ranking stage. The proposed method has been deployed in the Kuaishou search advertising system for over a year, contributing to a 6.1% reduction in the proportion of irrelevant ads and a 1.4% increase in ad revenue.