Abstract:Sparse longitudinal (SL) textual data arises when individuals generate text repeatedly over time (e.g., customer reviews, occasional social media posts, electronic medical records across visits), but the frequency and timing of observations vary across individuals. These complex textual data sets have immense potential to inform future policy and targeted recommendations. However, because SL text data lack dedicated methods and are noisy, heterogeneous, and prone to anomalies, detecting and inferring key patterns is challenging. We introduce LLmFPCA-detect, a flexible framework that pairs LLM-based text embeddings with functional data analysis to detect clusters and infer anomalies in large SL text datasets. First, LLmFPCA-detect embeds each piece of text into an application-specific numeric space using LLM prompts. Sparse multivariate functional principal component analysis (mFPCA) conducted in the numeric space forms the workhorse to recover primary population characteristics, and produces subject-level scores which, together with baseline static covariates, facilitate data segmentation, unsupervised anomaly detection and inference, and enable other downstream tasks. In particular, we leverage LLMs to perform dynamic keyword profiling guided by the data segments and anomalies discovered by LLmFPCA-detect, and we show that cluster-specific functional PC scores from LLmFPCA-detect, used as features in existing pipelines, help boost prediction performance. We support the stability of LLmFPCA-detect with experiments and evaluate it on two different applications using public datasets, Amazon customer-review trajectories, and Wikipedia talk-page comment streams, demonstrating utility across domains and outperforming state-of-the-art baselines.
Abstract:Vehicle edge caching is a promising technology that can significantly reduce the latency for vehicle users (VUs) to access content by pre-caching user-interested content at edge nodes. It is crucial to accurately predict the content that VUs are interested in without exposing their privacy. Traditional federated learning (FL) can protect user privacy by sharing models rather than raw data. However, the training of FL requires frequent model transmission, which can result in significant communication overhead. Additionally, vehicles may leave the road side unit (RSU) coverage area before training is completed, leading to training failures. To address these issues, in this letter, we propose a federated distillation-assisted vehicle edge caching scheme based on lightweight denoising diffusion probabilistic model (LDPM). The simulation results demonstrate that the proposed vehicle edge caching scheme has good robustness to variations in vehicle speed, significantly reducing communication overhead and improving cache hit percentage.
Abstract:Semantic Communication (SC) combined with Vehicular edge computing (VEC) provides an efficient edge task processing paradigm for Internet of Vehicles (IoV). Focusing on highway scenarios, this paper proposes a Tripartite Cooperative Semantic Communication (TCSC) framework, which enables Vehicle Users (VUs) to perform semantic task offloading via Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) communications. Considering task latency and the number of semantic symbols, the framework constructs a Mixed-Integer Nonlinear Programming (MINLP) problem, which is transformed into two subproblems. First, we innovatively propose a multi-agent proximal policy optimization task offloading optimization method based on parametric distribution noise (MAPPO-PDN) to solve the optimization problem of the number of semantic symbols; second, linear programming (LP) is used to solve offloading ratio. Simulations show that performance of this scheme is superior to that of other algorithms.
Abstract:Due to excessive memory overhead, most Multimodal Large Language Models (MLLMs) can only process videos of limited frames. In this paper, we propose an effective and efficient paradigm to remedy this shortcoming, termed One-shot video-Clip based Retrieval AuGmentation (OneClip-RAG). Compared with existing video RAG methods, OneClip-RAG makes full use of the merits of video clips for augmented video understanding in terms of both knowledge integrity and semantic coherence. Besides, it is also equipped with a novel query-guided video chunking algorithm that can unify clip chunking and cross-modal retrieval in one processing step, avoiding redundant computations. To improve instruction following, we further propose a new dataset called SynLongVideo and design a progressive training regime for OneClip-RAG. OneClip-RAG is plugged into five recent MLLMs and validated on a set of long-video benchmarks. Experimental results not only show the obvious performance gains by OneClip-RAG over MLLMs, e.g., boosting InternLV2 8B and Qwen2-VL 7B to the level of GPT-4o on MLVU, but also show its superior efficiency in handling long videos. e.g., enabling LLaVA-Video understand up to an hour of videos in less than 2.2 minutes on a single 4090 GPU.
Abstract:A novel transmissive reconfigurable intelligent surface (TRIS) transceiver-empowered simultaneous wireless information and power transfer (SWIPT) framework is proposed. The sum-rate of the information decoding (ID) users is maximized by optimizing the TRIS transceiver's beamforming, subject to the energy harvesting (EH) users' quality-of-harvest and the per-antenna power constraints. To solve this non-convex problem, we develop an efficient optimization algorithm. First, the original problem is reformulated as a semi-definite programming (SDP) problem. The resulting SDP problem is then addressed using successive convex approximation (SCA) combined with a penalty-based method. Numerical results demonstrate the effectiveness of the algorithm.
Abstract:This paper investigates a novel transmissive reconfigurable intelligent surface (TRIS) transceiver-empowered simultaneous wireless information and power transfer (SWIPT) system with multiple information decoding (ID) and energy harvesting (EH) users. Under the considered system model, we formulate an optimization problem that maximizes the sum-rate of all ID users via the design of the TRIS transceiver's active beamforming. The design is constrained by per-antenna power limits at the TRIS transceiver and by the minimum harvested energy demand of all EH users. Due to the non-convexity of the objective function and the energy harvesting constraint, the sum-rate problem is difficult to tackle. To solve this challenging optimization problem, by leveraging the weighted minimum mean squared error (WMMSE) framework and the majorization-minimization (MM) method, we propose a second-order cone programming (SOCP)-based algorithm. Per-element power constraints introduce a large number of constraints, making the problem considerably more difficult. By applying the alternating direction method of multipliers (ADMM) method, we successfully develop an analytical, computationally efficient, and highly parallelizable algorithm to address this challenge. Numerical results are provided to validate the convergence and effectiveness of the proposed algorithms. Furthermore, the low-complexity algorithm significantly reduces computational complexity without performance degradation.
Abstract:Cross-View Geo-Localization (CVGL) focuses on identifying correspondences between images captured from distinct perspectives of the same geographical location. However, existing CVGL approaches are typically restricted to a single view or modality, and their direct visual matching strategy lacks interpretability: they merely predict whether two images correspond, without explaining the rationale behind the match. In this paper, we present GLEAM-C, a foundational CVGL model that unifies multiple views and modalities-including UAV imagery, street maps, panoramic views, and ground photographs-by aligning them exclusively with satellite imagery. Our framework enhances training efficiency through optimized implementation while achieving accuracy comparable to prior modality-specific CVGL models through a two-phase training strategy. Moreover, to address the lack of interpretability in traditional CVGL methods, we leverage the reasoning capabilities of multimodal large language models (MLLMs) to propose a new task, GLEAM-X, which combines cross-view correspondence prediction with explainable reasoning. To support this task, we construct a bilingual benchmark using GPT-4o and Doubao-1.5-Thinking-Vision-Pro to generate training and testing data. The test set is further refined through detailed human revision, enabling systematic evaluation of explainable cross-view reasoning and advancing transparency and scalability in geo-localization. Together, GLEAM-C and GLEAM-X form a comprehensive CVGL pipeline that integrates multi-modal, multi-view alignment with interpretable correspondence analysis, unifying accurate cross-view matching with explainable reasoning and advancing Geo-Localization by enabling models to better Explain And Match. Code and datasets used in this work will be made publicly accessible at https://github.com/Lucky-Lance/GLEAM.




Abstract:Large Language Models (LLMs) have demonstrated remarkable capabilities, leading to a significant increase in user demand for LLM services. However, cloud-based LLM services often suffer from high latency, unstable responsiveness, and privacy concerns. Therefore, multiple LLMs are usually deployed at the network edge to boost real-time responsiveness and protect data privacy, particularly for many emerging smart mobile and IoT applications. Given the varying response quality and latency of LLM services, a critical issue is how to route user requests from mobile and IoT devices to an appropriate LLM service (i.e., edge LLM expert) to ensure acceptable quality-of-service (QoS). Existing routing algorithms fail to simultaneously address the heterogeneity of LLM services, the interference among requests, and the dynamic workloads necessary for maintaining long-term stable QoS. To meet these challenges, in this paper we propose a novel deep reinforcement learning (DRL)-based QoS-aware LLM routing framework for sustained high-quality LLM services. Due to the dynamic nature of the global state, we propose a dynamic state abstraction technique to compactly represent global state features with a heterogeneous graph attention network (HAN). Additionally, we introduce an action impact estimator and a tailored reward function to guide the DRL agent in maximizing QoS and preventing latency violations. Extensive experiments on both Poisson and real-world workloads demonstrate that our proposed algorithm significantly improves average QoS and computing resource efficiency compared to existing baselines.




Abstract:Despite the recent advancements in artificial intelligence technologies have shown great potential in improving transport efficiency and safety, autonomous vehicles(AVs) still face great challenge of driving in time-varying traffic flow, especially in dense and interactive situations. Meanwhile, human have free wills and usually do not make the same decisions even situate in the exactly same scenarios, leading to the data-driven methods suffer from poor migratability and high search cost problems, decreasing the efficiency and effectiveness of the behavior policy. In this research, we propose a safety-first human-like decision-making framework(SF-HLDM) for AVs to drive safely, comfortably, and social compatiblely in effiency. The framework integrates a hierarchical progressive framework, which combines a spatial-temporal attention (S-TA) mechanism for other road users' intention inference, a social compliance estimation module for behavior regulation, and a Deep Evolutionary Reinforcement Learning(DERL) model for expanding the search space efficiently and effectively to make avoidance of falling into the local optimal trap and reduce the risk of overfitting, thus make human-like decisions with interpretability and flexibility. The SF-HLDM framework enables autonomous driving AI agents dynamically adjusts decision parameters to maintain safety margins and adhering to contextually appropriate driving behaviors at the same time.
Abstract:Edge caching is an emerging technology that empowers caching units at edge nodes, allowing users to fetch contents of interest that have been pre-cached at the edge nodes. The key to pre-caching is to maximize the cache hit percentage for cached content without compromising users' privacy. In this letter, we propose a federated learning (FL) assisted edge caching scheme based on lightweight architecture denoising diffusion probabilistic model (LDPM). Our simulation results verify that our proposed scheme achieves a higher cache hit percentage compared to existing FL-based methods and baseline methods.