Abstract:Large Language Models (LLMs) face significant challenges in edge deployment due to their massive parameter scale. Vector Quantization (VQ), a clustering-based quantization method, serves as a prevalent solution to this issue for its extremely low-bit (even at 2-bit) and considerable accuracy. Since a vector is a quantity in mathematics and physics that has both direction and magnitude, existing VQ works typically quantize them in a coupled manner. However, we find that direction exhibits significantly greater sensitivity to quantization compared to the magnitude. For instance, when separately clustering the directions and magnitudes of weight vectors in LLaMA-2-7B, the accuracy drop of zero-shot tasks are 46.5\% and 2.3\%, respectively. This gap even increases with the reduction of clustering centers. Further, Euclidean distance, a common metric to access vector similarities in current VQ works, places greater emphasis on reducing the magnitude error. This property is contrary to the above finding, unavoidably leading to larger quantization errors. To these ends, this paper proposes Polar Coordinate Decoupled Vector Quantization (PCDVQ), an effective and efficient VQ framework consisting of two key modules: 1) Polar Coordinate Decoupling (PCD), which transforms vectors into their polar coordinate representations and perform independent quantization of the direction and magnitude parameters.2) Distribution Aligned Codebook Construction (DACC), which optimizes the direction and magnitude codebooks in accordance with the source distribution. Experimental results show that PCDVQ outperforms baseline methods at 2-bit level by at least 1.5\% zero-shot accuracy, establishing a novel paradigm for accurate and highly compressed LLMs.
Abstract:Transforming complex actions into discrete skill abstractions has demonstrated strong potential for robotic manipulation. Existing approaches mainly leverage latent variable models, e.g., VQ-VAE, to learn skill abstractions through learned vectors (codebooks), while they suffer from codebook collapse and modeling the causal relationship between learned skills. To address these limitations, we present \textbf{S}kill \textbf{T}raining with \textbf{A}ugmented \textbf{R}otation (\textbf{STAR}), a framework that advances both skill learning and composition to complete complex behaviors. Specifically, to prevent codebook collapse, we devise rotation-augmented residual skill quantization (RaRSQ). It encodes relative angles between encoder outputs into the gradient flow by rotation-based gradient mechanism. Points within the same skill code are forced to be either pushed apart or pulled closer together depending on gradient directions. Further, to capture the causal relationship between skills, we present causal skill transformer (CST) which explicitly models dependencies between skill representations through an autoregressive mechanism for coherent action generation. Extensive experiments demonstrate the superiority of STAR on both LIBERO benchmark and realworld tasks, with around 12\% improvement over the baselines.
Abstract:Continual Learning (CL) aims to enable models to continuously acquire new knowledge from a sequence of tasks with avoiding the forgetting of learned information. However, existing CL methods only rely on the parameters of the most recent task for inference, which makes them susceptible to catastrophic forgetting. Inspired by the recent success of model merging techniques, we propose \textbf{Perturb-and-Merge (P\&M)}, a novel continual learning framework that integrates model merging into the CL paradigm to mitigate forgetting. Specifically, after training on each task, P\&M constructs a new model by forming a convex combination of the previous model and the newly trained task-specific model. Through theoretical analysis, we minimize the total loss increase across all tasks and derive an analytical solution for the optimal merging coefficient. To further improve the performance of the merged model, we observe that the degradation introduced during merging can be alleviated by a regularization term composed of the task vector and the Hessian matrix of the loss function. Interestingly, we show that this term can be efficiently approximated using second-order symmetric finite differences, and a stochastic perturbation strategy along the task vector direction is accordingly devised which incurs no additional forward or backward passes while providing an effective approximation of the regularization term. Finally, we combine P\&M with LoRA, a parameter-efficient fine-tuning method, to reduce memory overhead. Our proposed approach achieves state-of-the-art performance on several continual learning benchmark datasets.
Abstract:Continual Learning requires a model to learn multiple tasks in sequence while maintaining both stability:preserving knowledge from previously learned tasks, and plasticity:effectively learning new tasks. Gradient projection has emerged as an effective and popular paradigm in CL, where it partitions the gradient space of previously learned tasks into two orthogonal subspaces: a primary subspace and a minor subspace. New tasks are learned effectively within the minor subspace, thereby reducing interference with previously acquired knowledge. However, existing Gradient Projection methods struggle to achieve an optimal balance between plasticity and stability, as it is hard to appropriately partition the gradient space. In this work, we consider a continual learning paradigm based on Low-Rank Adaptation, which has gained considerable attention due to its efficiency and wide applicability, and propose a novel approach for continual learning, called SplitLoRA. We first provide a theoretical analysis of how subspace partitioning affects model stability and plasticity. Informed by this analysis, we then introduce an effective method that derives the optimal partition of the gradient space for previously learned tasks. This approach effectively balances stability and plasticity in continual learning. Experimental results on multiple datasets demonstrate that the proposed method achieves state-of-the-art performance.
Abstract:Recent advancements in vision-language models (VLMs) have spurred increased interest in Device-Control Agents (DC agents), such as utilizing in-the-wild device control to manage graphical user interfaces. Conventional methods for assessing the capabilities of DC agents, such as computing step-wise action accuracy and overall task success rates, provide a macroscopic view of DC agents' performance; however, they fail to offer microscopic insights into potential errors that may occur in real-world applications. Conducting a finer-grained performance evaluation of DC agents presents significant challenges. This study introduces a new perspective on evaluation methods for DC agents by proposing the XBOUND evaluation method, which employs the calculation of a novel Explore Metric to delineate the capability boundaries of DC agents. Compared to previous evaluation methods, XBOUND focuses on individual states to assess the proficiency of DC agents in mastering these states. Furthermore, we have developed a ``pseudo'' episode tree dataset derived from Android Control test data. Utilizing this dataset and XBOUND, we comprehensively evaluate the OS-Atlas and UI-TARS series, examining both the overall and specific performance across five common tasks. Additionally, we select representative cases to highlight the current deficiencies and limitations inherent in both series. Code is available at https://github.com/sqzhang-lazy/XBOUND.
Abstract:In this report, we present the method that achieves third place for Ego4D EgoSchema Challenge in CVPR 2025. To improve the reliability of answer prediction in egocentric video question answering, we propose an effective extension to the previously proposed HCQA framework. Our approach introduces a multi-source aggregation strategy to generate diverse predictions, followed by a confidence-based filtering mechanism that selects high-confidence answers directly. For low-confidence cases, we incorporate a fine-grained reasoning module that performs additional visual and contextual analysis to refine the predictions. Evaluated on the EgoSchema blind test set, our method achieves 77% accuracy on over 5,000 human-curated multiple-choice questions, outperforming last year's winning solution and the majority of participating teams. Our code will be added at https://github.com/Hyu-Zhang/HCQA.
Abstract:Large recommender models have extended LLMs as powerful recommenders via encoding or item generation, and recent breakthroughs in LLM reasoning synchronously motivate the exploration of reasoning in recommendation. Current studies usually position LLMs as external reasoning modules to yield auxiliary thought for augmenting conventional recommendation pipelines. However, such decoupled designs are limited in significant resource cost and suboptimal joint optimization. To address these issues, we propose \name, a unified large recommender model with intrinsic reasoning capabilities. Initially, we reconceptualize the model architecture to facilitate interleaved reasoning and recommendation in the autoregressive process. Subsequently, we propose RecPO, a corresponding reinforcement learning framework that optimizes \name\ both the reasoning and recommendation capabilities simultaneously in a single policy update; RecPO introduces a fused reward scheme that solely leverages recommendation labels to simulate the reasoning capability, eliminating dependency on specialized reasoning annotations. Experiments on three datasets with various baselines verify the effectiveness of \name, showing relative improvements of 68.67\% in Hit@5 and 45.21\% in NDCG@20. Code available at https://github.com/YRYangang/RRec.
Abstract:GUI automation faces critical challenges in dynamic environments. MLLMs suffer from two key issues: misinterpreting UI components and outdated knowledge. Traditional fine-tuning methods are costly for app-specific knowledge updates. We propose GUI-explorer, a training-free GUI agent that incorporates two fundamental mechanisms: (1) Autonomous Exploration of Function-aware Trajectory. To comprehensively cover all application functionalities, we design a Function-aware Task Goal Generator that automatically constructs exploration goals by analyzing GUI structural information (e.g., screenshots and activity hierarchies). This enables systematic exploration to collect diverse trajectories. (2) Unsupervised Mining of Transition-aware Knowledge. To establish precise screen-operation logic, we develop a Transition-aware Knowledge Extractor that extracts effective screen-operation logic through unsupervised analysis the state transition of structured interaction triples (observation, action, outcome). This eliminates the need for human involvement in knowledge extraction. With a task success rate of 53.7% on SPA-Bench and 47.4% on AndroidWorld, GUI-explorer shows significant improvements over SOTA agents. It requires no parameter updates for new apps. GUI-explorer is open-sourced and publicly available at https://github.com/JiuTian-VL/GUI-explorer.
Abstract:Stable Diffusion has advanced text-to-image synthesis, but training models to generate images with accurate object quantity is still difficult due to the high computational cost and the challenge of teaching models the abstract concept of quantity. In this paper, we propose CountDiffusion, a training-free framework aiming at generating images with correct object quantity from textual descriptions. CountDiffusion consists of two stages. In the first stage, an intermediate denoising result is generated by the diffusion model to predict the final synthesized image with one-step denoising, and a counting model is used to count the number of objects in this image. In the second stage, a correction module is used to correct the object quantity by changing the attention map of the object with universal guidance. The proposed CountDiffusion can be plugged into any diffusion-based text-to-image (T2I) generation models without further training. Experiment results demonstrate the superiority of our proposed CountDiffusion, which improves the accurate object quantity generation ability of T2I models by a large margin.
Abstract:Egocentric video grounding is a crucial task for embodied intelligence applications, distinct from exocentric video moment localization. Existing methods primarily focus on the distributional differences between egocentric and exocentric videos but often neglect key characteristics of egocentric videos and the fine-grained information emphasized by question-type queries. To address these limitations, we propose OSGNet, an Object-Shot enhanced Grounding Network for egocentric video. Specifically, we extract object information from videos to enrich video representation, particularly for objects highlighted in the textual query but not directly captured in the video features. Additionally, we analyze the frequent shot movements inherent to egocentric videos, leveraging these features to extract the wearer's attention information, which enhances the model's ability to perform modality alignment. Experiments conducted on three datasets demonstrate that OSGNet achieves state-of-the-art performance, validating the effectiveness of our approach. Our code can be found at https://github.com/Yisen-Feng/OSGNet.