Victor
Abstract:Reinforcement learning (RL) has emerged as a key paradigm for aligning and optimizing large language models (LLMs). Standard approaches treat the LLM as the policy and apply RL directly over the full vocabulary space. However, this formulation includes the massive tail of contextually irrelevant tokens in the action space, which could distract the policy from focusing on decision-making among the truly reasonable tokens. In this work, we verify that valid reasoning paths could inherently concentrate within a low-rank subspace. Based on this insight, we introduce Reinforcement Learning with Promising Tokens (RLPT), a framework that mitigates the action space issue by decoupling strategic decision-making from token generation. Specifically, RLPT leverages the semantic priors of the base model to identify a dynamic set of \emph{promising tokens} and constrains policy optimization exclusively to this refined subset via masking. Theoretical analysis and empirical results demonstrate that RLPT effectively reduces gradient variance, stabilizes the training process, and improves sample efficiency. Experiment results on math, coding, and telecom reasoning show that RLPT outperforms standard RL baselines and integrates effectively across various model sizes (4B and 8B) and RL algorithms (GRPO and DAPO).
Abstract:Embodied AI requires agents to understand goals, plan actions, and execute tasks in simulated environments. We present a comprehensive evaluation of Large Language Models (LLMs) on the VirtualHome benchmark using the Embodied Agent Interface (EAI) framework. We compare two representative 7B-parameter models OPENPANGU-7B and QWEN2.5-7B across four fundamental tasks: Goal Interpretation, Action Sequencing, Subgoal Decomposition, and Transition Modeling. We propose Structured Self-Consistency (SSC), an enhanced decoding strategy that leverages multiple sampling with domain-specific voting mechanisms to improve output quality for structured generation tasks. Experimental results demonstrate that SSC significantly enhances performance, with OPENPANGU-7B excelling at hierarchical planning while QWEN2.5-7B show advantages in action-level tasks. Our analysis reveals complementary strengths across model types, providing insights for future embodied AI system development.
Abstract:Test-Time Scaling (TTS) has emerged as an effective paradigm for improving the reasoning performance of large language models (LLMs). However, existing methods -- most notably majority voting and heuristic token-level scoring -- treat reasoning traces or tokens equally, thereby being susceptible to substantial variations in trajectory quality and localized logical failures. In this work, we introduce \textbf{Chronos}, a lightweight and plug-and-play chronological reasoning scorer that models each trajectory as a time series. Specifically, Chronos learns to capture trajectory features of token probabilities, assigns quality scores accordingly, and employs a weighted voting mechanism. Extensive evaluations on both in-domain and out-of-domain benchmarks demonstrate that Chronos consistently delivers substantial gains across a variety of models, with negligible computational overhead. Notably, Chronos@128 achieves relative improvements of 34.21\% over Pass@1 and 22.70\% over Maj@128 on HMMT25 using Qwen3-4B-Thinking-2507, highlighting its effectiveness.
Abstract:Generalist LLM agents are often post-trained on a narrow set of environments but deployed across far broader, unseen domains. In this work, we investigate the challenge of agentic post-training when the eventual test domains are unknown. Specifically, we analyze which properties of reinforcement learning (RL) environments and modeling choices have the greatest influence on out-of-domain performance. First, we identify two environment axes that strongly correlate with cross-domain generalization: (i) state information richness, i.e., the amount of information for the agent to process from the state, and (ii) planning complexity, estimated via goal reachability and trajectory length under a base policy. Notably, domain realism and text-level similarity are not the primary factors; for instance, the simple grid-world domain Sokoban leads to even stronger generalization in SciWorld than the more realistic ALFWorld. Motivated by these findings, we further show that increasing state information richness alone can already effectively improve cross-domain robustness. We propose a randomization technique, which is low-overhead and broadly applicable: add small amounts of distractive goal-irrelevant features to the state to make it richer without altering the task. Beyond environment-side properties, we also examine several modeling choices: (a) SFT warmup or mid-training helps prevent catastrophic forgetting during RL but undermines generalization to domains that are not included in the mid-training datamix; and (b) turning on step-by-step thinking during RL, while not always improving in-domain performance, plays a crucial role in preserving generalization.
Abstract:Video captioning models convert frames into visual tokens and generate descriptions with large language models (LLMs). Since encoding all frames is prohibitively expensive, uniform sampling is the default choice, but it enforces equal temporal coverage while ignoring the uneven events distribution. This motivates a Learnable Frame Selector (LFS) that selects temporally diverse and event-relevant frames. LFS explicitly models temporal importance to balance temporal diversity and event relevance, and employs a stratified strategy to ensure temporal coverage while avoiding clustering. Crucially, LFS leverages caption feedback from frozen video-LLMs to learn frame selection that directly optimizes downstream caption quality. Additionally, we identify the gap between existing benchmark and human's cognition. Thus, we introduce ICH-CC built from carefully designed questions by annotators that reflect human-consistent understanding of video. Experiments indicate that LFS consistently improves detailed video captioning across two representative community benchmarks and ICH-CC, achieving up to 2.0% gains on VDC and over 4% gains on ICH-CC. Moreover, we observe that enhanced captions with LFS leads to improved performance on video question answering. Overall, LFS provides an effective and easy-to-integrate solution for detailed video captioning.
Abstract:We present Soft Tail-dropping Adaptive Tokenizer (STAT), a 1D discrete visual tokenizer that adaptively chooses the number of output tokens per image according to its structural complexity and level of detail. STAT encodes an image into a sequence of discrete codes together with per-token keep probabilities. Beyond standard autoencoder objectives, we regularize these keep probabilities to be monotonically decreasing along the sequence and explicitly align their distribution with an image-level complexity measure. As a result, STAT produces length-adaptive 1D visual tokens that are naturally compatible with causal 1D autoregressive (AR) visual generative models. On ImageNet-1k, equipping vanilla causal AR models with STAT yields competitive or superior visual generation quality compared to other probabilistic model families, while also exhibiting favorable scaling behavior that has been elusive in prior vanilla AR visual generation attempts.
Abstract:Zero-shot composed image retrieval (ZS-CIR) is a rapidly growing area with significant practical applications, allowing users to retrieve a target image by providing a reference image and a relative caption describing the desired modifications. Existing ZS-CIR methods often struggle to capture fine-grained changes and integrate visual and semantic information effectively. They primarily rely on either transforming the multimodal query into a single text using image-to-text models or employing large language models for target image description generation, approaches that often fail to capture complementary visual information and complete semantic context. To address these limitations, we propose a novel Fine-Grained Zero-Shot Composed Image Retrieval method with Complementary Visual-Semantic Integration (CVSI). Specifically, CVSI leverages three key components: (1) Visual Information Extraction, which not only extracts global image features but also uses a pre-trained mapping network to convert the image into a pseudo token, combining it with the modification text and the objects most likely to be added. (2) Semantic Information Extraction, which involves using a pre-trained captioning model to generate multiple captions for the reference image, followed by leveraging an LLM to generate the modified captions and the objects most likely to be added. (3) Complementary Information Retrieval, which integrates information extracted from both the query and database images to retrieve the target image, enabling the system to efficiently handle retrieval queries in a variety of situations. Extensive experiments on three public datasets (e.g., CIRR, CIRCO, and FashionIQ) demonstrate that CVSI significantly outperforms existing state-of-the-art methods. Our code is available at https://github.com/yyc6631/CVSI.
Abstract:In the information and communications technology (ICT) industry, training a domain-specific large language model (LLM) or constructing a retrieval-augmented generation system requires a substantial amount of high-value domain knowledge. However, the knowledge is not only hidden in the textual modality but also in the image modality. Traditional methods can parse text from domain documents but dont have image captioning ability. Multi-modal LLM (MLLM) can understand images, but they do not have sufficient domain knowledge. To address the above issues, this paper proposes a multi-stage progressive training strategy to train a Domain-specific Image Captioning Model (DICModel) in ICT, and constructs a standard evaluation system to validate the performance of DICModel. Specifically, this work first synthesizes about 7K image-text pairs by combining the Mermaid tool and LLMs, which are used for the first-stage supervised-fine-tuning (SFT) of DICModel. Then, ICT-domain experts manually annotate about 2K image-text pairs for the second-stage SFT of DICModel. Finally, experts and LLMs jointly synthesize about 1.5K visual question answering data for the instruction-based SFT. Experimental results indicate that our DICModel with only 7B parameters performs better than other state-of-the-art models with 32B parameters. Compared to the SOTA models with 7B and 32B parameters, our DICModel increases the BLEU metric by approximately 56.8% and 20.8%, respectively. On the objective questions constructed by ICT domain experts, our DICModel outperforms Qwen2.5-VL 32B by 1% in terms of accuracy rate. In summary, this work can efficiently and accurately extract the logical text from images, which is expected to promote the development of multimodal models in the ICT domain.
Abstract:Fast, reliable decoders are pivotal components for enabling fault-tolerant quantum computation (FTQC). Neural network decoders like AlphaQubit have demonstrated potential, achieving higher accuracy than traditional human-designed decoding algorithms. However, existing implementations of neural network decoders lack the parallelism required to decode the syndrome stream generated by a superconducting logical qubit in real time. Moreover, integrating AlphaQubit with sliding window-based parallel decoding schemes presents non-trivial challenges: AlphaQubit is trained solely to output a single bit corresponding to the global logical correction for an entire memory experiment, rather than local physical corrections that can be easily integrated. We address this issue by training a recurrent, transformer-based neural network specifically tailored for parallel window decoding. While it still outputs a single bit, we derive training labels from a consistent set of local corrections and train on various types of decoding windows simultaneously. This approach enables the network to self-coordinate across neighboring windows, facilitating high-accuracy parallel decoding of arbitrarily long memory experiments. As a result, we overcome the throughput bottleneck that previously precluded the use of AlphaQubit-type decoders in FTQC. Our work presents the first scalable, neural-network-based parallel decoding framework that simultaneously achieves SOTA accuracy and the stringent throughput required for real-time quantum error correction. Using an end-to-end experimental workflow, we benchmark our decoder on the Zuchongzhi 3.2 superconducting quantum processor on surface codes with distances up to 7, demonstrating its superior accuracy. Moreover, we demonstrate that, using our approach, a single TPU v6e is capable of decoding surface codes with distances up to 25 within 1us per decoding round.
Abstract:Currently, the field of structure-based drug design is dominated by three main types of algorithms: search-based algorithms, deep generative models, and reinforcement learning. While existing works have typically focused on comparing models within a single algorithmic category, cross-algorithm comparisons remain scarce. In this paper, to fill the gap, we establish a benchmark to evaluate the performance of fifteen models across these different algorithmic foundations by assessing the pharmaceutical properties of the generated molecules and their docking affinities and poses with specified target proteins. We highlight the unique advantages of each algorithmic approach and offer recommendations for the design of future SBDD models. We emphasize that 1D/2D ligand-centric drug design methods can be used in SBDD by treating the docking function as a black-box oracle, which is typically neglected. Our evaluation reveals distinct patterns across model categories. 3D structure-based models excel in binding affinities but show inconsistencies in chemical validity and pose quality. 1D models demonstrate reliable performance in standard molecular metrics but rarely achieve optimal binding affinities. 2D models offer balanced performance, maintaining high chemical validity while achieving moderate binding scores. Through detailed analysis across multiple protein targets, we identify key improvement areas for each model category, providing insights for researchers to combine strengths of different approaches while addressing their limitations. All the code that are used for benchmarking is available in https://github.com/zkysfls/2025-sbdd-benchmark