Abstract:We introduce ChronoQA, a large-scale benchmark dataset for Chinese question answering, specifically designed to evaluate temporal reasoning in Retrieval-Augmented Generation (RAG) systems. ChronoQA is constructed from over 300,000 news articles published between 2019 and 2024, and contains 5,176 high-quality questions covering absolute, aggregate, and relative temporal types with both explicit and implicit time expressions. The dataset supports both single- and multi-document scenarios, reflecting the real-world requirements for temporal alignment and logical consistency. ChronoQA features comprehensive structural annotations and has undergone multi-stage validation, including rule-based, LLM-based, and human evaluation, to ensure data quality. By providing a dynamic, reliable, and scalable resource, ChronoQA enables structured evaluation across a wide range of temporal tasks, and serves as a robust benchmark for advancing time-sensitive retrieval-augmented question answering systems.
Abstract:Large Language Model (LLM) based listwise ranking has shown superior performance in many passage ranking tasks. With the development of Large Reasoning Models, many studies have demonstrated that step-by-step reasoning during test-time helps improve listwise ranking performance. However, due to the scarcity of reasoning-intensive training data, existing rerankers perform poorly in many complex ranking scenarios and the ranking ability of reasoning-intensive rerankers remains largely underdeveloped. In this paper, we first propose an automated reasoning-intensive training data synthesis framework, which sources training queries and passages from diverse domains and applies DeepSeek-R1 to generate high-quality training labels. A self-consistency data filtering mechanism is designed to ensure the data quality. To empower the listwise reranker with strong reasoning ability, we further propose a two-stage post-training approach, which includes a cold-start supervised fine-tuning (SFT) stage for reasoning pattern learning and a reinforcement learning (RL) stage for further ranking ability enhancement. During the RL stage, based on the nature of listwise ranking, we design a multi-view ranking reward, which is more effective than a ranking metric-based reward. Extensive experiments demonstrate that our trained reasoning-intensive reranker \textbf{ReasonRank} outperforms existing baselines significantly and also achieves much lower latency than pointwise reranker Rank1. \textbf{Through further experiments, our ReasonRank has achieved state-of-the-art (SOTA) performance 40.6 on the BRIGHT leaderboard\footnote{https://brightbenchmark.github.io/}.} Our codes are available at https://github.com/8421BCD/ReasonRank.
Abstract:The advent of Large Language Models (LLMs) is transforming search engines into conversational AI search products, primarily using Retrieval-Augmented Generation (RAG) on web corpora. However, this paradigm has significant industrial limitations. Traditional RAG approaches struggle with real-time needs and structured queries that require accessing dynamically generated content like ticket availability or inventory. Limited to indexing static pages, search engines cannot perform the interactive queries needed for such time-sensitive data. Academic research has focused on optimizing RAG for static content, overlooking complex intents and the need for dynamic sources like databases and real-time APIs. To bridge this gap, we introduce TURA (Tool-Augmented Unified Retrieval Agent for AI Search), a novel three-stage framework that combines RAG with agentic tool-use to access both static content and dynamic, real-time information. TURA has three key components: an Intent-Aware Retrieval module to decompose queries and retrieve information sources encapsulated as Model Context Protocol (MCP) Servers, a DAG-based Task Planner that models task dependencies as a Directed Acyclic Graph (DAG) for optimal parallel execution, and a lightweight Distilled Agent Executor for efficient tool calling. TURA is the first architecture to systematically bridge the gap between static RAG and dynamic information sources for a world-class AI search product. Serving tens of millions of users, it leverages an agentic framework to deliver robust, real-time answers while meeting the low-latency demands of a large-scale industrial system.
Abstract:The conventional Cranfield paradigm struggles to effectively capture user satisfaction due to its weak correlation between relevance and satisfaction, alongside the high costs of relevance annotation in building test collections. To tackle these issues, our research explores the potential of leveraging large language models (LLMs) to generate multilevel usefulness labels for evaluation. We introduce a new user-centric evaluation framework that integrates users' search context and behavioral data into LLMs. This framework uses a cascading judgment structure designed for multilevel usefulness assessments, drawing inspiration from ordinal regression techniques. Our study demonstrates that when well-guided with context and behavioral information, LLMs can accurately evaluate usefulness, allowing our approach to surpass third-party labeling methods. Furthermore, we conduct ablation studies to investigate the influence of key components within the framework. We also apply the labels produced by our method to predict user satisfaction, with real-world experiments indicating that these labels substantially improve the performance of satisfaction prediction models.
Abstract:The evolution of Large Language Models (LLMs) has significantly advanced multi-turn conversation systems, emphasizing the need for proactive guidance to enhance users' interactions. However, these systems face challenges in dynamically adapting to shifts in users' goals and maintaining low latency for real-time interactions. In the Baidu Search AI assistant, an industrial-scale multi-turn search system, we propose a novel two-phase framework to provide proactive guidance. The first phase, Goal-adaptive Supervised Fine-Tuning (G-SFT), employs a goal adaptation agent that dynamically adapts to user goal shifts and provides goal-relevant contextual information. G-SFT also incorporates scalable knowledge transfer to distill insights from LLMs into a lightweight model for real-time interaction. The second phase, Click-oriented Reinforcement Learning (C-RL), adopts a generate-rank paradigm, systematically constructs preference pairs from user click signals, and proactively improves click-through rates through more engaging guidance. This dual-phase architecture achieves complementary objectives: G-SFT ensures accurate goal tracking, while C-RL optimizes interaction quality through click signal-driven reinforcement learning. Extensive experiments demonstrate that our framework achieves 86.10% accuracy in offline evaluation (+23.95% over baseline) and 25.28% CTR in online deployment (149.06% relative improvement), while reducing inference latency by 69.55% through scalable knowledge distillation.
Abstract:Large language models (LLMs) have been widely integrated into information retrieval to advance traditional techniques. However, effectively enabling LLMs to seek accurate knowledge in complex tasks remains a challenge due to the complexity of multi-hop queries as well as the irrelevant retrieved content. To address these limitations, we propose EXSEARCH, an agentic search framework, where the LLM learns to retrieve useful information as the reasoning unfolds through a self-incentivized process. At each step, the LLM decides what to retrieve (thinking), triggers an external retriever (search), and extracts fine-grained evidence (recording) to support next-step reasoning. To enable LLM with this capability, EXSEARCH adopts a Generalized Expectation-Maximization algorithm. In the E-step, the LLM generates multiple search trajectories and assigns an importance weight to each; the M-step trains the LLM on them with a re-weighted loss function. This creates a self-incentivized loop, where the LLM iteratively learns from its own generated data, progressively improving itself for search. We further theoretically analyze this training process, establishing convergence guarantees. Extensive experiments on four knowledge-intensive benchmarks show that EXSEARCH substantially outperforms baselines, e.g., +7.8% improvement on exact match score. Motivated by these promising results, we introduce EXSEARCH-Zoo, an extension that extends our method to broader scenarios, to facilitate future work.
Abstract:Large language models have achieved remarkable success in various tasks. However, it is challenging for them to learn new tasks incrementally due to catastrophic forgetting. Existing approaches rely on experience replay, optimization constraints, or task differentiation, which encounter strict limitations in real-world scenarios. To address these issues, we propose Joint Flashback Adaptation. We first introduce flashbacks -- a limited number of prompts from old tasks -- when adapting to new tasks and constrain the deviations of the model outputs compared to the original one. We then interpolate latent tasks between flashbacks and new tasks to enable jointly learning relevant latent tasks, new tasks, and flashbacks, alleviating data sparsity in flashbacks and facilitating knowledge sharing for smooth adaptation. Our method requires only a limited number of flashbacks without access to the replay data and is task-agnostic. We conduct extensive experiments on state-of-the-art large language models across 1000+ instruction-following tasks, arithmetic reasoning tasks, and general reasoning tasks. The results demonstrate the superior performance of our method in improving generalization on new tasks and reducing forgetting in old tasks.
Abstract:Retrieval-augmented generation (RAG) integrates large language models ( LLM s) with retrievers to access external knowledge, improving the factuality of LLM generation in knowledge-grounded tasks. To optimize the RAG performance, most previous work independently fine-tunes the retriever to adapt to frozen LLM s or trains the LLMs to use documents retrieved by off-the-shelf retrievers, lacking end-to-end training supervision. Recent work addresses this limitation by jointly training these two components but relies on overly simplifying assumptions of document independence, which has been criticized for being far from real-world scenarios. Thus, effectively optimizing the overall RAG performance remains a critical challenge. We propose a direct retrieval-augmented optimization framework, named DRO, that enables end-to-end training of two key components: (i) a generative knowledge selection model and (ii) an LLM generator. DRO alternates between two phases: (i) document permutation estimation and (ii) re-weighted maximization, progressively improving RAG components through a variational approach. In the estimation step, we treat document permutation as a latent variable and directly estimate its distribution from the selection model by applying an importance sampling strategy. In the maximization step, we calibrate the optimization expectation using importance weights and jointly train the selection model and LLM generator. Our theoretical analysis reveals that DRO is analogous to policy-gradient methods in reinforcement learning. Extensive experiments conducted on five datasets illustrate that DRO outperforms the best baseline with 5%-15% improvements in EM and F1. We also provide in-depth experiments to qualitatively analyze the stability, convergence, and variance of DRO.
Abstract:Generative retrieval (GR) has emerged as a promising paradigm in information retrieval (IR). However, most existing GR models are developed and evaluated using a static document collection, and their performance in dynamic corpora where document collections evolve continuously is rarely studied. In this paper, we first reproduce and systematically evaluate various representative GR approaches over dynamic corpora. Through extensive experiments, we reveal that existing GR models with \textit{text-based} docids show superior generalization to unseen documents. We observe that the more fine-grained the docid design in the GR model, the better its performance over dynamic corpora, surpassing BM25 and even being comparable to dense retrieval methods. While GR models with \textit{numeric-based} docids show high efficiency, their performance drops significantly over dynamic corpora. Furthermore, our experiments find that the underperformance of numeric-based docids is partly due to their excessive tendency toward the initial document set, which likely results from overfitting on the training set. We then conduct an in-depth analysis of the best-performing GR methods. We identify three critical advantages of text-based docids in dynamic corpora: (i) Semantic alignment with language models' pretrained knowledge, (ii) Fine-grained docid design, and (iii) High lexical diversity. Building on these insights, we finally propose a novel multi-docid design that leverages both the efficiency of numeric-based docids and the effectiveness of text-based docids, achieving improved performance in dynamic corpus without requiring additional retraining. Our work offers empirical evidence for advancing GR methods over dynamic corpora and paves the way for developing more generalized yet efficient GR models in real-world search engines.
Abstract:In modern search systems, search engines often suggest relevant queries to users through various panels or components, helping refine their information needs. Traditionally, these recommendations heavily rely on historical search logs to build models, which suffer from cold-start or long-tail issues. Furthermore, tasks such as query suggestion, completion or clarification are studied separately by specific design, which lacks generalizability and hinders adaptation to novel applications. Despite recent attempts to explore the use of LLMs for query recommendation, these methods mainly rely on the inherent knowledge of LLMs or external sources like few-shot examples, retrieved documents, or knowledge bases, neglecting the importance of the calibration and alignment with user feedback, thus limiting their practical utility. To address these challenges, we first propose a general Generative Query Recommendation (GQR) framework that aligns LLM-based query generation with user preference. Specifically, we unify diverse query recommendation tasks by a universal prompt framework, leveraging the instruct-following capability of LLMs for effective generation. Secondly, we align LLMs with user feedback via presenting a CTR-alignment framework, which involves training a query-wise CTR predictor as a process reward model and employing list-wise preference alignment to maximize the click probability of the generated query list. Furthermore, recognizing the inconsistency between LLM knowledge and proactive search intents arising from the separation of user-initiated queries from models, we align LLMs with user initiative via retrieving co-occurrence queries as side information when historical logs are available.