Low Earth Orbit (LEO) satellites are being extensively researched in the development of secure Internet of Remote Things (IoRT). In scenarios with miniaturized terminals, the limited transmission power and long transmission distance often lead to low Signal-to-Noise Ratio (SNR) at the satellite receiver, which degrades communication performance. A solution to address this issue is the utilization of cooperative satellites, which can combine signals received from multiple satellites, thereby significantly improve SNR. However, in order to maximize the combination gain, the signal coherent combining is necessary, which requires the carrier frequency and phase of each receiving signal to be aligned. Under low SNR circumstances, carrier parameter estimation can be a significant challenge, especially for short burst transmission with no training sequence. In order to tackle it, we propose an iterative code-aided estimation algorithm for joint Carrier Frequency Offset (CFO) and Carrier Phase Offset (CPO). The Cram\'er-Rao Lower Bound (CRLB) is suggested as the limit on the parameter estimation performance. Simulation results demonstrate that the proposed algorithm can approach Bit Error Rate (BER) performance bound within 0.4 dB with regards to four-satellite collaboration.
Unlike cloud-based deep learning models that are often large and uniform, edge-deployed models usually demand customization for domain-specific tasks and resource-limited environments. Such customization processes can be costly and time-consuming due to the diversity of edge scenarios and the training load for each scenario. Although various approaches have been proposed for rapid resource-oriented customization and task-oriented customization respectively, achieving both of them at the same time is challenging. Drawing inspiration from the generative AI and the modular composability of neural networks, we introduce NN-Factory, an one-for-all framework to generate customized lightweight models for diverse edge scenarios. The key idea is to use a generative model to directly produce the customized models, instead of training them. The main components of NN-Factory include a modular supernet with pretrained modules that can be conditionally activated to accomplish different tasks and a generative module assembler that manipulate the modules according to task and sparsity requirements. Given an edge scenario, NN-Factory can efficiently customize a compact model specialized in the edge task while satisfying the edge resource constraints by searching for the optimal strategy to assemble the modules. Based on experiments on image classification and object detection tasks with different edge devices, NN-Factory is able to generate high-quality task- and resource-specific models within few seconds, faster than conventional model customization approaches by orders of magnitude.
Optical Music Recognition (OMR) is an important technology in music and has been researched for a long time. Previous approaches for OMR are usually based on CNN for image understanding and RNN for music symbol classification. In this paper, we propose a transformer-based approach with excellent global perceptual capability for end-to-end polyphonic OMR, called TrOMR. We also introduce a novel consistency loss function and a reasonable approach for data annotation to improve recognition accuracy for complex music scores. Extensive experiments demonstrate that TrOMR outperforms current OMR methods, especially in real-world scenarios. We also develop a TrOMR system and build a camera scene dataset for full-page music scores in real-world. The code and datasets will be made available for reproducibility.
Novel Class Discovery (NCD) aims at inferring novel classes in an unlabeled set by leveraging prior knowledge from a labeled set with known classes. Despite its importance, there is a lack of theoretical foundations for NCD. This paper bridges the gap by providing an analytical framework to formalize and investigate when and how known classes can help discover novel classes. Tailored to the NCD problem, we introduce a graph-theoretic representation that can be learned by a novel NCD Spectral Contrastive Loss (NSCL). Minimizing this objective is equivalent to factorizing the graph's adjacency matrix, which allows us to derive a provable error bound and provide the sufficient and necessary condition for NCD. Empirically, NSCL can match or outperform several strong baselines on common benchmark datasets, which is appealing for practical usage while enjoying theoretical guarantees.
Out-of-Distribution (OOD) detection is critical for the reliable operation of open-world intelligent systems. Despite the emergence of an increasing number of OOD detection methods, the evaluation inconsistencies present challenges for tracking the progress in this field. OpenOOD v1 initiated the unification of the OOD detection evaluation but faced limitations in scalability and usability. In response, this paper presents OpenOOD v1.5, a significant improvement from its predecessor that ensures accurate, standardized, and user-friendly evaluation of OOD detection methodologies. Notably, OpenOOD v1.5 extends its evaluation capabilities to large-scale datasets such as ImageNet, investigates full-spectrum OOD detection which is important yet underexplored, and introduces new features including an online leaderboard and an easy-to-use evaluator. This work also contributes in-depth analysis and insights derived from comprehensive experimental results, thereby enriching the knowledge pool of OOD detection methodologies. With these enhancements, OpenOOD v1.5 aims to drive advancements and offer a more robust and comprehensive evaluation benchmark for OOD detection research.
Modern machine learning models deployed in the wild can encounter both covariate and semantic shifts, giving rise to the problems of out-of-distribution (OOD) generalization and OOD detection respectively. While both problems have received significant research attention lately, they have been pursued independently. This may not be surprising, since the two tasks have seemingly conflicting goals. This paper provides a new unified approach that is capable of simultaneously generalizing to covariate shifts while robustly detecting semantic shifts. We propose a margin-based learning framework that exploits freely available unlabeled data in the wild that captures the environmental test-time OOD distributions under both covariate and semantic shifts. We show both empirically and theoretically that the proposed margin constraint is the key to achieving both OOD generalization and detection. Extensive experiments show the superiority of our framework, outperforming competitive baselines that specialize in either OOD generalization or OOD detection. Code is publicly available at https://github.com/deeplearning-wisc/scone.
Recent large vision-language models such as CLIP have shown remarkable out-of-distribution (OOD) detection and generalization performance. However, their zero-shot in-distribution (ID) accuracy is often limited for downstream datasets. Recent CLIP-based fine-tuning methods such as prompt learning have demonstrated significant improvements in ID classification and OOD generalization where OOD labels are available. Nonetheless, it remains unclear whether the model is reliable to semantic shifts without OOD labels. In this paper, we aim to bridge the gap and present a comprehensive study to understand how fine-tuning impact OOD detection for few-shot downstream tasks. By framing OOD detection as multi-modal concept matching, we establish a connection between fine-tuning methods and various OOD scores. Our results suggest that a proper choice of OOD scores is essential for CLIP-based fine-tuning. In particular, the maximum concept matching (MCM) score provides a promising solution consistently. We also show that prompt learning demonstrates the state-of-the-art OOD detection performance over the zero-shot counterpart.
Out-of-distribution (OOD) detection is a critical task for reliable predictions over text. Fine-tuning with pre-trained language models has been a de facto procedure to derive OOD detectors with respect to in-distribution (ID) data. Despite its common use, the understanding of the role of fine-tuning and its necessity for OOD detection is largely unexplored. In this paper, we raise the question: is fine-tuning necessary for OOD detection? We present a study investigating the efficacy of directly leveraging pre-trained language models for OOD detection, without any model fine-tuning on the ID data. We compare the approach with several competitive fine-tuning objectives, and offer new insights under various types of distributional shifts. Extensive evaluations on 8 diverse ID-OOD dataset pairs demonstrate near-perfect OOD detection performance (with 0% FPR95 in many cases), strongly outperforming its fine-tuned counterparts. We show that using distance-based detection methods, pre-trained language models are near-perfect OOD detectors when the distribution shift involves a domain change. Furthermore, we study the effect of fine-tuning on OOD detection and identify how to balance ID accuracy with OOD detection performance. Our code is publically available at https://github.com/Uppaal/lm-ood.
Point cloud data has been extensively studied due to its compact form and flexibility in representing complex 3D structures. The ability of point cloud data to accurately capture and represent intricate 3D geometry makes it an ideal choice for a wide range of applications, including computer vision, robotics, and autonomous driving, all of which require an understanding of the underlying spatial structures. Given the challenges associated with annotating large-scale point clouds, self-supervised point cloud representation learning has attracted increasing attention in recent years. This approach aims to learn generic and useful point cloud representations from unlabeled data, circumventing the need for extensive manual annotations. In this paper, we present a comprehensive survey of self-supervised point cloud representation learning using DNNs. We begin by presenting the motivation and general trends in recent research. We then briefly introduce the commonly used datasets and evaluation metrics. Following that, we delve into an extensive exploration of self-supervised point cloud representation learning methods based on these techniques. Finally, we share our thoughts on some of the challenges and potential issues that future research in self-supervised learning for pre-training 3D point clouds may encounter.