Powered by the advances of optical remote sensing sensors, the production of very high spatial resolution multispectral images provides great potential for achieving cost-efficient and high-accuracy forest inventory and analysis in an automated way. Lots of studies that aim at providing an inventory to the level of each individual tree have generated a variety of methods for Individual Tree Crown Detection and Delineation (ITCD). This review covers ITCD methods for detecting and delineating individual tree crowns, and systematically reviews the past and present of ITCD-related researches applied to the optical remote sensing images. With the goal to provide a clear knowledge map of existing ITCD efforts, we conduct a comprehensive review of recent ITCD papers to build a meta-data analysis, including the algorithm, the study site, the tree species, the sensor type, the evaluation method, etc. We categorize the reviewed methods into three classes: (1) traditional image processing methods (such as local maximum filtering, image segmentation, etc.); (2) traditional machine learning methods (such as random forest, decision tree, etc.); and (3) deep learning based methods. With the deep learning-oriented approaches contributing a majority of the papers, we further discuss the deep learning-based methods as semantic segmentation and object detection methods. In addition, we discuss four ITCD-related issues to further comprehend the ITCD domain using optical remote sensing data, such as comparisons between multi-sensor based data and optical data in ITCD domain, comparisons among different algorithms and different ITCD tasks, etc. Finally, this review proposes some ITCD-related applications and a few exciting prospects and potential hot topics in future ITCD research.
The integration of visual encoders and large language models (LLMs) has driven recent progress in multimodal large language models (MLLMs). However, the scarcity of high-quality instruction-tuning data for vision-language tasks remains a challenge. The current leading paradigm, such as LLaVA, relies on language-only GPT-4 to generate data, which requires pre-annotated image captions and detection bounding boxes, suffering from understanding image details. A practical solution to this problem would be to utilize the available multimodal large language models (MLLMs) to generate instruction data for vision-language tasks. However, it's worth noting that the currently accessible MLLMs are not as powerful as their LLM counterparts, as they tend to produce inadequate responses and generate false information. As a solution for addressing the current issue, this paper proposes the Visual Instruction Generation and Correction (VIGC) framework that enables multimodal large language models to generate instruction-tuning data and progressively enhance its quality on-the-fly. Specifically, Visual Instruction Generation (VIG) guides the vision-language model to generate diverse instruction-tuning data. To ensure generation quality, Visual Instruction Correction (VIC) adopts an iterative update mechanism to correct any inaccuracies in data produced by VIG, effectively reducing the risk of hallucination. Leveraging the diverse, high-quality data generated by VIGC, we finetune mainstream models and validate data quality based on various evaluations. Experimental results demonstrate that VIGC not only compensates for the shortcomings of language-only data generation methods, but also effectively enhances the benchmark performance. The models, datasets, and code are available at https://opendatalab.github.io/VIGC.
Recently, the self-supervised pre-training paradigm has shown great potential in leveraging large-scale unlabeled data to improve downstream task performance. However, increasing the scale of unlabeled pre-training data in real-world scenarios requires prohibitive computational costs and faces the challenge of uncurated samples. To address these issues, we build a task-specific self-supervised pre-training framework from a data selection perspective based on a simple hypothesis that pre-training on the unlabeled samples with similar distribution to the target task can bring substantial performance gains. Buttressed by the hypothesis, we propose the first yet novel framework for Scalable and Efficient visual Pre-Training (SEPT) by introducing a retrieval pipeline for data selection. SEPT first leverage a self-supervised pre-trained model to extract the features of the entire unlabeled dataset for retrieval pipeline initialization. Then, for a specific target task, SEPT retrievals the most similar samples from the unlabeled dataset based on feature similarity for each target instance for pre-training. Finally, SEPT pre-trains the target model with the selected unlabeled samples in a self-supervised manner for target data finetuning. By decoupling the scale of pre-training and available upstream data for a target task, SEPT achieves high scalability of the upstream dataset and high efficiency of pre-training, resulting in high model architecture flexibility. Results on various downstream tasks demonstrate that SEPT can achieve competitive or even better performance compared with ImageNet pre-training while reducing the size of training samples by one magnitude without resorting to any extra annotations.
This paper presents OmniCity, a new dataset for omnipotent city understanding from multi-level and multi-view images. More precisely, the OmniCity contains multi-view satellite images as well as street-level panorama and mono-view images, constituting over 100K pixel-wise annotated images that are well-aligned and collected from 25K geo-locations in New York City. To alleviate the substantial pixel-wise annotation efforts, we propose an efficient street-view image annotation pipeline that leverages the existing label maps of satellite view and the transformation relations between different views (satellite, panorama, and mono-view). With the new OmniCity dataset, we provide benchmarks for a variety of tasks including building footprint extraction, height estimation, and building plane/instance/fine-grained segmentation. Compared with the existing multi-level and multi-view benchmarks, OmniCity contains a larger number of images with richer annotation types and more views, provides more benchmark results of state-of-the-art models, and introduces a novel task for fine-grained building instance segmentation on street-level panorama images. Moreover, OmniCity provides new problem settings for existing tasks, such as cross-view image matching, synthesis, segmentation, detection, etc., and facilitates the developing of new methods for large-scale city understanding, reconstruction, and simulation. The OmniCity dataset as well as the benchmarks will be available at https://city-super.github.io/omnicity.
Recent image matting studies are developing towards proposing trimap-free or interactive methods for complete complex image matting tasks. Although avoiding the extensive labors of trimap annotation, existing methods still suffer from two limitations: (1) For the single image with multiple objects, it is essential to provide extra interaction information to help determining the matting target; (2) For transparent objects, the accurate regression of alpha matte from RGB image is much more difficult compared with the opaque ones. In this work, we propose a Unified Interactive image Matting method, named UIM, which solves the limitations and achieves satisfying matting results for any scenario. Specifically, UIM leverages multiple types of user interaction to avoid the ambiguity of multiple matting targets, and we compare the pros and cons of different annotation types in detail. To unify the matting performance for transparent and opaque objects, we decouple image matting into two stages, i.e., foreground segmentation and transparency prediction. Moreover, we design a multi-scale attentive fusion module to alleviate the vagueness in the boundary region. Experimental results demonstrate that UIM achieves state-of-the-art performance on the Composition-1K test set and a synthetic unified dataset. Our code and models will be released soon.
Extracting building footprints from aerial images is essential for precise urban mapping with photogrammetric computer vision technologies. Existing approaches mainly assume that the roof and footprint of a building are well overlapped, which may not hold in off-nadir aerial images as there is often a big offset between them. In this paper, we propose an offset vector learning scheme, which turns the building footprint extraction problem in off-nadir images into an instance-level joint prediction problem of the building roof and its corresponding "roof to footprint" offset vector. Thus the footprint can be estimated by translating the predicted roof mask according to the predicted offset vector. We further propose a simple but effective feature-level offset augmentation module, which can significantly refine the offset vector prediction by introducing little extra cost. Moreover, a new dataset, Buildings in Off-Nadir Aerial Images (BONAI), is created and released in this paper. It contains 268,958 building instances across 3,300 aerial images with fully annotated instance-level roof, footprint, and corresponding offset vector for each building. Experiments on the BONAI dataset demonstrate that our method achieves the state-of-the-art, outperforming other competitors by 3.37 to 7.39 points in F1-score. The codes, datasets, and trained models are available at https://github.com/jwwangchn/BONAI.git.
The existing active learning methods select the samples by evaluating the sample's uncertainty or its effect on the diversity of labeled datasets based on different task-specific or model-specific criteria. In this paper, we propose the Influence Selection for Active Learning(ISAL) which selects the unlabeled samples that can provide the most positive Influence on model performance. To obtain the Influence of the unlabeled sample in the active learning scenario, we design the Untrained Unlabeled sample Influence Calculation(UUIC) to estimate the unlabeled sample's expected gradient with which we calculate its Influence. To prove the effectiveness of UUIC, we provide both theoretical and experimental analyses. Since the UUIC just depends on the model gradients, which can be obtained easily from any neural network, our active learning algorithm is task-agnostic and model-agnostic. ISAL achieves state-of-the-art performance in different active learning settings for different tasks with different datasets. Compared with previous methods, our method decreases the annotation cost at least by 12%, 13% and 16% on CIFAR10, VOC2012 and COCO, respectively.
Providing an accurate evaluation of palm tree plantation in a large region can bring meaningful impacts in both economic and ecological aspects. However, the enormous spatial scale and the variety of geological features across regions has made it a grand challenge with limited solutions based on manual human monitoring efforts. Although deep learning based algorithms have demonstrated potential in forming an automated approach in recent years, the labelling efforts needed for covering different features in different regions largely constrain its effectiveness in large-scale problems. In this paper, we propose a novel domain adaptive oil palm tree detection method, i.e., a Multi-level Attention Domain Adaptation Network (MADAN) to reap cross-regional oil palm tree counting and detection. MADAN consists of 4 procedures: First, we adopted a batch-instance normalization network (BIN) based feature extractor for improving the generalization ability of the model, integrating batch normalization and instance normalization. Second, we embedded a multi-level attention mechanism (MLA) into our architecture for enhancing the transferability, including a feature level attention and an entropy level attention. Then we designed a minimum entropy regularization (MER) to increase the confidence of the classifier predictions through assigning the entropy level attention value to the entropy penalty. Finally, we employed a sliding window-based prediction and an IOU based post-processing approach to attain the final detection results. We conducted comprehensive ablation experiments using three different satellite images of large-scale oil palm plantation area with six transfer tasks. MADAN improves the detection accuracy by 14.98% in terms of average F1-score compared with the Baseline method (without DA), and performs 3.55%-14.49% better than existing domain adaptation methods.