State Key Laboratory of the Control and Simulation of Power Systems and Generation Equipment, Tsinghua University
Abstract:Current frontier video diffusion models have demonstrated remarkable results at generating high-quality videos. However, they can only generate short video clips, normally around 10 seconds or 240 frames, due to computation limitations during training. In this work, we show that existing models can be naturally extended to autoregressive video diffusion models without changing the architectures. Our key idea is to assign the latent frames with progressively increasing noise levels rather than a single noise level, which allows for fine-grained condition among the latents and large overlaps between the attention windows. Such progressive video denoising allows our models to autoregressively generate video frames without quality degradation or abrupt scene changes. We present state-of-the-art results on long video generation at 1 minute (1440 frames at 24 FPS). Videos from this paper are available at https://desaixie.github.io/pa-vdm/.
Abstract:We present a method to create diffusion-based video models from pretrained Text-to-Image (T2I) models. Recently, AnimateDiff proposed freezing the T2I model while only training temporal layers. We advance this method by proposing a unique architecture, incorporating a mapping network and frame-wise tokens, tailored for video generation while maintaining the diversity and creativity of the original T2I model. Key innovations include novel loss functions for temporal smoothness and a mitigating gradient sampling technique, ensuring realistic and temporally consistent video generation despite limited public video data. We have successfully integrated video-specific inductive biases into the architecture and loss functions. Our method, built on the frozen StableDiffusion model, simplifies training processes and allows for seamless integration with off-the-shelf models like ControlNet and DreamBooth. project page: https://kwonminki.github.io/HARIVO
Abstract:Jailbreak vulnerabilities in Large Language Models (LLMs) refer to methods that extract malicious content from the model by carefully crafting prompts or suffixes, which has garnered significant attention from the research community. However, traditional attack methods, which primarily focus on the semantic level, are easily detected by the model. These methods overlook the difference in the model's alignment protection capabilities at different output stages. To address this issue, we propose an adaptive position pre-fill jailbreak attack approach for executing jailbreak attacks on LLMs. Our method leverages the model's instruction-following capabilities to first output pre-filled safe content, then exploits its narrative-shifting abilities to generate harmful content. Extensive black-box experiments demonstrate our method can improve the attack success rate by 47% on the widely recognized secure model (Llama2) compared to existing approaches. Our code can be found at: https://github.com/Yummy416/AdaPPA.
Abstract:The Hilbert-Schmidt Independence Criterion (HSIC) is a powerful tool for nonparametric detection of dependence between random variables. It crucially depends, however, on the selection of reasonable kernels; commonly-used choices like the Gaussian kernel, or the kernel that yields the distance covariance, are sufficient only for amply sized samples from data distributions with relatively simple forms of dependence. We propose a scheme for selecting the kernels used in an HSIC-based independence test, based on maximizing an estimate of the asymptotic test power. We prove that maximizing this estimate indeed approximately maximizes the true power of the test, and demonstrate that our learned kernels can identify forms of structured dependence between random variables in various experiments.
Abstract:The Song Generation task aims to synthesize music composed of vocals and accompaniment from given lyrics. While the existing method, Jukebox, has explored this task, its constrained control over the generations often leads to deficiency in music performance. To mitigate the issue, we introduce an important concept from music composition, namely chords, to song generation networks. Chords form the foundation of accompaniment and provide vocal melody with associated harmony. Given the inaccuracy of automatic chord extractors, we devise a robust cross-attention mechanism augmented with dynamic weight sequence to integrate extracted chord information into song generations and reduce frame-level flaws, and propose a novel model termed Chord-Conditioned Song Generator (CSG) based on it. Experimental evidence demonstrates our proposed method outperforms other approaches in terms of musical performance and control precision of generated songs.
Abstract:Music is an integral part of human culture, embodying human intelligence and creativity, of which songs compose an essential part. While various aspects of song generation have been explored by previous works, such as singing voice, vocal composition and instrumental arrangement, etc., generating songs with both vocals and accompaniment given lyrics remains a significant challenge, hindering the application of music generation models in the real world. In this light, we propose SongCreator, a song-generation system designed to tackle this challenge. The model features two novel designs: a meticulously designed dual-sequence language model (DSLM) to capture the information of vocals and accompaniment for song generation, and an additional attention mask strategy for DSLM, which allows our model to understand, generate and edit songs, making it suitable for various song-related generation tasks. Extensive experiments demonstrate the effectiveness of SongCreator by achieving state-of-the-art or competitive performances on all eight tasks. Notably, it surpasses previous works by a large margin in lyrics-to-song and lyrics-to-vocals. Additionally, it is able to independently control the acoustic conditions of the vocals and accompaniment in the generated song through different prompts, exhibiting its potential applicability. Our samples are available at https://songcreator.github.io/.
Abstract:Sequential recommendation systems fundamentally rely on users' historical interaction sequences, which are often contaminated by noisy interactions. Identifying these noisy interactions accurately without additional information is particularly difficult due to the lack of explicit supervisory signals to denote noise. Large Language Models (LLMs), equipped with extensive open knowledge and semantic reasoning abilities, present a promising avenue to bridge this information gap. However, employing LLMs for denoising in sequential recommendation introduces notable challenges: 1) Direct application of pretrained LLMs may not be competent for the denoising task, frequently generating nonsensical responses; 2) Even after fine-tuning, the reliability of LLM outputs remains questionable, especially given the complexity of the task and th inherent hallucinatory issue of LLMs. To tackle these challenges, we propose LLM4DSR, a tailored approach for denoising sequential recommendation using LLMs. We constructed a self-supervised fine-tuning task to activate LLMs' capabilities to identify noisy items and suggest replacements. Furthermore, we developed an uncertainty estimation module that ensures only high-confidence responses are utilized for sequence corrections. Remarkably, LLM4DSR is model-agnostic, allowing the corrected sequences to be flexibly applied across various recommendation models. Extensive experiments validate the superiority of LLM4DSR over existing methods across three datasets and three recommendation backbones.
Abstract:Existing EEW approaches often treat phase picking, location estimation, and magnitude estimation as separate tasks, lacking a unified framework. Additionally, most deep learning models in seismology rely on full three-component waveforms and are not suitable for real-time streaming data. To address these limitations, we propose a novel unified seismic neural network called Fast Information Streaming Handler (FisH). FisH is designed to process real-time streaming seismic data and generate simultaneous results for phase picking, location estimation, and magnitude estimation in an end-to-end fashion. By integrating these tasks within a single model, FisH simplifies the overall process and leverages the nonlinear relationships between tasks for improved performance. The FisH model utilizes RetNet as its backbone, enabling parallel processing during training and recurrent handling during inference. This capability makes FisH suitable for real-time applications, reducing latency in EEW systems. Extensive experiments conducted on the STEAD benchmark dataset provide strong validation for the effectiveness of our proposed FisH model. The results demonstrate that FisH achieves impressive performance across multiple seismic event detection and characterization tasks. Specifically, it achieves an F1 score of 0.99/0.96. Also, FisH demonstrates precise earthquake location estimation, with location error of only 6.0km, a distance error of 2.6km, and a back-azimuth error of 19{\deg}. The model also exhibits accurate earthquake magnitude estimation, with a magnitude error of just 0.14. Additionally, FisH is capable of generating real-time estimations, providing location and magnitude estimations with a location error of 8.06km and a magnitude error of 0.18 within a mere 3 seconds after the P-wave arrives.
Abstract:Embedding-based neural retrieval (EBR) is an effective search retrieval method in product search for tackling the vocabulary gap between customer search queries and products. The initial launch of our EBR system at Walmart yielded significant gains in relevance and add-to-cart rates [1]. However, despite EBR generally retrieving more relevant products for reranking, we have observed numerous instances of relevance degradation. Enhancing retrieval performance is crucial, as it directly influences product reranking and affects the customer shopping experience. Factors contributing to these degradations include false positives/negatives in the training data and the inability to handle query misspellings. To address these issues, we present several approaches to further strengthen the capabilities of our EBR model in terms of retrieval relevance. We introduce a Relevance Reward Model (RRM) based on human relevance feedback. We utilize RRM to remove noise from the training data and distill it into our EBR model through a multi-objective loss. In addition, we present the techniques to increase the performance of our EBR model, such as typo-aware training, and semi-positive generation. The effectiveness of our EBR is demonstrated through offline relevance evaluation, online AB tests, and successful deployments to live production. [1] Alessandro Magnani, Feng Liu, Suthee Chaidaroon, Sachin Yadav, Praveen Reddy Suram, Ajit Puthenputhussery, Sijie Chen, Min Xie, Anirudh Kashi, Tony Lee, et al. 2022. Semantic retrieval at walmart. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 3495-3503.
Abstract:In embedding-based retrieval, Approximate Nearest Neighbor (ANN) search enables efficient retrieval of similar items from large-scale datasets. While maximizing recall of relevant items is usually the goal of retrieval systems, a low precision may lead to a poor search experience. Unlike lexical retrieval, which inherently limits the size of the retrieved set through keyword matching, dense retrieval via ANN search has no natural cutoff. Moreover, the cosine similarity scores of embedding vectors are often optimized via contrastive or ranking losses, which make them difficult to interpret. Consequently, relying on top-K or cosine-similarity cutoff is often insufficient to filter out irrelevant results effectively. This issue is prominent in product search, where the number of relevant products is often small. This paper introduces a novel relevance filtering component (called "Cosine Adapter") for embedding-based retrieval to address this challenge. Our approach maps raw cosine similarity scores to interpretable scores using a query-dependent mapping function. We then apply a global threshold on the mapped scores to filter out irrelevant results. We are able to significantly increase the precision of the retrieved set, at the expense of a small loss of recall. The effectiveness of our approach is demonstrated through experiments on both public MS MARCO dataset and internal Walmart product search data. Furthermore, online A/B testing on the Walmart site validates the practical value of our approach in real-world e-commerce settings.