Pre-trained language models have achieved impressive results in various music understanding and generation tasks. However, existing pre-training methods for symbolic melody generation struggle to capture multi-scale, multi-dimensional structural information in note sequences, due to the domain knowledge discrepancy between text and music. Moreover, the lack of available large-scale symbolic melody datasets limits the pre-training improvement. In this paper, we propose MelodyGLM, a multi-task pre-training framework for generating melodies with long-term structure. We design the melodic n-gram and long span sampling strategies to create local and global blank infilling tasks for modeling the local and global structures in melodies. Specifically, we incorporate pitch n-grams, rhythm n-grams, and their combined n-grams into the melodic n-gram blank infilling tasks for modeling the multi-dimensional structures in melodies. To this end, we have constructed a large-scale symbolic melody dataset, MelodyNet, containing more than 0.4 million melody pieces. MelodyNet is utilized for large-scale pre-training and domain-specific n-gram lexicon construction. Both subjective and objective evaluations demonstrate that MelodyGLM surpasses the standard and previous pre-training methods. In particular, subjective evaluations show that, on the melody continuation task, MelodyGLM gains average improvements of 0.82, 0.87, 0.78, and 0.94 in consistency, rhythmicity, structure, and overall quality, respectively. Notably, MelodyGLM nearly matches the quality of human-composed melodies on the melody inpainting task.
Building AIs with adaptive behaviors in human-AI cooperation stands as a pivotal focus in AGI research. Current methods for developing cooperative agents predominantly rely on learning-based methods, where policy generalization heavily hinges on past interactions with specific teammates. These approaches constrain the agent's capacity to recalibrate its strategy when confronted with novel teammates. We propose \textbf{ProAgent}, a novel framework that harnesses large language models (LLMs) to fashion a \textit{pro}active \textit{agent} empowered with the ability to anticipate teammates' forthcoming decisions and formulate enhanced plans for itself. ProAgent excels at cooperative reasoning with the capacity to dynamically adapt its behavior to enhance collaborative efforts with teammates. Moreover, the ProAgent framework exhibits a high degree of modularity and interpretability, facilitating seamless integration to address a wide array of coordination scenarios. Experimental evaluations conducted within the framework of \textit{Overcook-AI} unveil the remarkable performance superiority of ProAgent, outperforming five methods based on self-play and population-based training in cooperation with AI agents. Further, when cooperating with human proxy models, its performance exhibits an average improvement exceeding 10\% compared to the current state-of-the-art, COLE. The advancement was consistently observed across diverse scenarios involving interactions with both AI agents of varying characteristics and human counterparts. These findings inspire future research for human-robot collaborations. For a hands-on demonstration, please visit \url{https://pku-proagent.github.io}.
Image generation tasks are traditionally undertaken using Convolutional Neural Networks (CNN) or Transformer architectures for feature aggregating and dispatching. Despite the frequent application of convolution and attention structures, these structures are not fundamentally required to solve the problem of instability and the lack of interpretability in image generation. In this paper, we propose a unique image generation process premised on the perspective of converting images into a set of point clouds. In other words, we interpret an image as a set of points. As such, our methodology leverages simple clustering methods named Context Clustering (CoC) to generate images from unordered point sets, which defies the convention of using convolution or attention mechanisms. Hence, we exclusively depend on this clustering technique, combined with the multi-layer perceptron (MLP) in a generative model. Furthermore, we implement the integration of a module termed the 'Point Increaser' for the model. This module is just an MLP tasked with generating additional points for clustering, which are subsequently integrated within the paradigm of the Generative Adversarial Network (GAN). We introduce this model with the novel structure as the Context Clustering Generative Adversarial Network (CoC-GAN), which offers a distinctive viewpoint in the domain of feature aggregating and dispatching. Empirical evaluations affirm that our CoC-GAN, devoid of convolution and attention mechanisms, exhibits outstanding performance. Its interpretability, endowed by the CoC module, also allows for visualization in our experiments. The promising results underscore the feasibility of our method and thus warrant future investigations of applying Context Clustering to more novel and interpretable image generation.
To answer complex queries on knowledge graphs, logical reasoning over incomplete knowledge is required due to the open-world assumption. Learning-based methods are essential because they are capable of generalizing over unobserved knowledge. Therefore, an appropriate dataset is fundamental to both obtaining and evaluating such methods under this paradigm. In this paper, we propose a comprehensive framework for data generation, model training, and method evaluation that covers the combinatorial space of Existential First-order Queries with multiple variables ($\text{EFO}_{k}$). The combinatorial query space in our framework significantly extends those defined by set operations in the existing literature. Additionally, we construct a dataset, $\text{EFO}_{k}$-CQA, with 741 types of query for empirical evaluation, and our benchmark results provide new insights into how query hardness affects the results. Furthermore, we demonstrate that the existing dataset construction process is systematically biased that hinders the appropriate development of query-answering methods, highlighting the importance of our work. Our code and data are provided in~\url{https://github.com/HKUST-KnowComp/EFOK-CQA}.
In this paper, we study the inductive biases in convolutional neural networks (CNNs), which are believed to be vital drivers behind CNNs' exceptional performance on vision-like tasks. We first analyze the universality of CNNs, i.e., the ability to approximate continuous functions. We prove that a depth of $\mathcal{O}(\log d)$ is sufficient for achieving universality, where $d$ is the input dimension. This is a significant improvement over existing results that required a depth of $\Omega(d)$. We also prove that learning sparse functions with CNNs needs only $\tilde{\mathcal{O}}(\log^2d)$ samples, indicating that deep CNNs can efficiently capture long-range sparse correlations. Note that all these are achieved through a novel combination of increased network depth and the utilization of multichanneling and downsampling. Lastly, we study the inductive biases of weight sharing and locality through the lens of symmetry. To separate two biases, we introduce locally-connected networks (LCNs), which can be viewed as CNNs without weight sharing. Specifically, we compare the performance of CNNs, LCNs, and fully-connected networks (FCNs) on a simple regression task. We prove that LCNs require ${\Omega}(d)$ samples while CNNs need only $\tilde{\mathcal{O}}(\log^2d)$ samples, which highlights the cruciality of weight sharing. We also prove that FCNs require $\Omega(d^2)$ samples while LCNs need only $\tilde{\mathcal{O}}(d)$ samples, demonstrating the importance of locality. These provable separations quantify the difference between the two biases, and our major observation behind is that weight sharing and locality break different symmetries in the learning process.
Real-time emotion-based music arrangement, which aims to transform a given music piece into another one that evokes specific emotional resonance with the user in real-time, holds significant application value in various scenarios, e.g., music therapy, video game soundtracks, and movie scores. However, balancing emotion real-time fit with soft emotion transition is a challenge due to the fine-grained and mutable nature of the target emotion. Existing studies mainly focus on achieving emotion real-time fit, while the issue of soft transition remains understudied, affecting the overall emotional coherence of the music. In this paper, we propose SongDriver2 to address this balance. Specifically, we first recognize the last timestep's music emotion and then fuse it with the current timestep's target input emotion. The fused emotion then serves as the guidance for SongDriver2 to generate the upcoming music based on the input melody data. To adjust music similarity and emotion real-time fit flexibly, we downsample the original melody and feed it into the generation model. Furthermore, we design four music theory features to leverage domain knowledge to enhance emotion information and employ semi-supervised learning to mitigate the subjective bias introduced by manual dataset annotation. According to the evaluation results, SongDriver2 surpasses the state-of-the-art methods in both objective and subjective metrics. These results demonstrate that SongDriver2 achieves real-time fit and soft transitions simultaneously, enhancing the coherence of the generated music.
Answering complex queries on knowledge graphs is important but particularly challenging because of the data incompleteness. Query embedding methods address this issue by learning-based models and simulating logical reasoning with set operators. Previous works focus on specific forms of embeddings, but scoring functions between embeddings are underexplored. In contrast to existing scoring functions motivated by local comparison or global transport, this work investigates the local and global trade-off with unbalanced optimal transport theory. Specifically, we embed sets as bounded measures in $\real$ endowed with a scoring function motivated by the Wasserstein-Fisher-Rao metric. Such a design also facilitates closed-form set operators in the embedding space. Moreover, we introduce a convolution-based algorithm for linear time computation and a block-diagonal kernel to enforce the trade-off. Results show that WFRE can outperform existing query embedding methods on standard datasets, evaluation sets with combinatorially complex queries, and hierarchical knowledge graphs. Ablation study shows that finding a better local and global trade-off is essential for performance improvement.
Label hierarchy is an important source of external knowledge that can enhance classification performance. However, most existing methods rely on predefined label hierarchies that may not match the data distribution. To address this issue, we propose Simultaneous label hierarchy Exploration And Learning (SEAL), a new framework that explores the label hierarchy by augmenting the observed labels with latent labels that follow a prior hierarchical structure. Our approach uses a 1-Wasserstein metric over the tree metric space as an objective function, which enables us to simultaneously learn a data-driven label hierarchy and perform (semi-)supervised learning. We evaluate our method on several datasets and show that it achieves superior results in both supervised and semi-supervised scenarios and reveals insightful label structures. Our implementation is available at https://github.com/tzq1999/SEAL.
The proposed BSDE-based diffusion model represents a novel approach to diffusion modeling, which extends the application of stochastic differential equations (SDEs) in machine learning. Unlike traditional SDE-based diffusion models, our model can determine the initial conditions necessary to reach a desired terminal distribution by adapting an existing score function. We demonstrate the theoretical guarantees of the model, the benefits of using Lipschitz networks for score matching, and its potential applications in various areas such as diffusion inversion, conditional diffusion, and uncertainty quantification. Our work represents a contribution to the field of score-based generative learning and offers a promising direction for solving real-world problems.