Abstract:We introduce MonkeyOCR, a vision-language model for document parsing that advances the state of the art by leveraging a Structure-Recognition-Relation (SRR) triplet paradigm. This design simplifies what would otherwise be a complex multi-tool pipeline (as in MinerU's modular approach) and avoids the inefficiencies of processing full pages with giant end-to-end models (e.g., large multimodal LLMs like Qwen-VL). In SRR, document parsing is abstracted into three fundamental questions - "Where is it?" (structure), "What is it?" (recognition), and "How is it organized?" (relation) - corresponding to layout analysis, content identification, and logical ordering. This focused decomposition balances accuracy and speed: it enables efficient, scalable processing without sacrificing precision. To train and evaluate this approach, we introduce the MonkeyDoc (the most comprehensive document parsing dataset to date), with 3.9 million instances spanning over ten document types in both Chinese and English. Experiments show that MonkeyOCR outperforms MinerU by an average of 5.1%, with particularly notable improvements on challenging content such as formulas (+15.0%) and tables (+8.6%). Remarkably, our 3B-parameter model surpasses much larger and top-performing models, including Qwen2.5-VL (72B) and Gemini 2.5 Pro, achieving state-of-the-art average performance on English document parsing tasks. In addition, MonkeyOCR processes multi-page documents significantly faster (0.84 pages per second compared to 0.65 for MinerU and 0.12 for Qwen2.5-VL-7B). The 3B model can be efficiently deployed for inference on a single NVIDIA 3090 GPU. Code and models will be released at https://github.com/Yuliang-Liu/MonkeyOCR.
Abstract:Quadrotors have demonstrated remarkable versatility, yet their full aerobatic potential remains largely untapped due to inherent underactuation and the complexity of aggressive maneuvers. Traditional approaches, separating trajectory optimization and tracking control, suffer from tracking inaccuracies, computational latency, and sensitivity to initial conditions, limiting their effectiveness in dynamic, high-agility scenarios. Inspired by recent breakthroughs in data-driven methods, we propose a reinforcement learning-based framework that directly maps drone states and aerobatic intentions to control commands, eliminating modular separation to enable quadrotors to perform end-to-end policy optimization for extreme aerobatic maneuvers. To ensure efficient and stable training, we introduce an automated curriculum learning strategy that dynamically adjusts aerobatic task difficulty. Enabled by domain randomization for robust zero-shot sim-to-real transfer, our approach is validated in demanding real-world experiments, including the first demonstration of a drone autonomously performing continuous inverted flight while reactively navigating a moving gate, showcasing unprecedented agility.
Abstract:Retrieval-Augmented Generation (RAG) significantly improves the performance of Large Language Models (LLMs) on knowledge-intensive tasks. However, varying response quality across LLMs under RAG necessitates intelligent routing mechanisms, which select the most suitable model for each query from multiple retrieval-augmented LLMs via a dedicated router model. We observe that external documents dynamically affect LLMs' ability to answer queries, while existing routing methods, which rely on static parametric knowledge representations, exhibit suboptimal performance in RAG scenarios. To address this, we formally define the new retrieval-augmented LLM routing problem, incorporating the influence of retrieved documents into the routing framework. We propose RAGRouter, a RAG-aware routing design, which leverages document embeddings and RAG capability embeddings with contrastive learning to capture knowledge representation shifts and enable informed routing decisions. Extensive experiments on diverse knowledge-intensive tasks and retrieval settings show that RAGRouter outperforms the best individual LLM by 3.61% on average and existing routing methods by 3.29%-9.33%. With an extended score-threshold-based mechanism, it also achieves strong performance-efficiency trade-offs under low-latency constraints.
Abstract:Neural fields (NFs) have demonstrated remarkable performance in scene reconstruction, powering various tasks such as novel view synthesis. However, existing NF methods relying on RGB or LiDAR inputs often exhibit severe fragility to adverse weather, particularly when applied in outdoor scenarios like autonomous driving. In contrast, millimeter-wave radar is inherently robust to environmental changes, while unfortunately, its integration with NFs remains largely underexplored. Besides, as outdoor driving scenarios frequently involve moving objects, making spatiotemporal modeling essential for temporally consistent novel view synthesis. To this end, we introduce RF4D, a radar-based neural field framework specifically designed for novel view synthesis in outdoor dynamic scenes. RF4D explicitly incorporates temporal information into its representation, significantly enhancing its capability to model moving objects. We further introduce a feature-level flow module that predicts latent temporal offsets between adjacent frames, enforcing temporal coherence in dynamic scene modeling. Moreover, we propose a radar-specific power rendering formulation closely aligned with radar sensing physics, improving synthesis accuracy and interoperability. Extensive experiments on public radar datasets demonstrate the superior performance of RF4D in terms of radar measurement synthesis quality and occupancy estimation accuracy, achieving especially pronounced improvements in dynamic outdoor scenarios.
Abstract:Large Multimodal Models (LMMs) has demonstrated capabilities across various domains, but comprehensive benchmarks for agricultural remote sensing (RS) remain scarce. Existing benchmarks designed for agricultural RS scenarios exhibit notable limitations, primarily in terms of insufficient scene diversity in the dataset and oversimplified task design. To bridge this gap, we introduce AgroMind, a comprehensive agricultural remote sensing benchmark covering four task dimensions: spatial perception, object understanding, scene understanding, and scene reasoning, with a total of 13 task types, ranging from crop identification and health monitoring to environmental analysis. We curate a high-quality evaluation set by integrating eight public datasets and one private farmland plot dataset, containing 25,026 QA pairs and 15,556 images. The pipeline begins with multi-source data preprocessing, including collection, format standardization, and annotation refinement. We then generate a diverse set of agriculturally relevant questions through the systematic definition of tasks. Finally, we employ LMMs for inference, generating responses, and performing detailed examinations. We evaluated 18 open-source LMMs and 3 closed-source models on AgroMind. Experiments reveal significant performance gaps, particularly in spatial reasoning and fine-grained recognition, it is notable that human performance lags behind several leading LMMs. By establishing a standardized evaluation framework for agricultural RS, AgroMind reveals the limitations of LMMs in domain knowledge and highlights critical challenges for future work. Data and code can be accessed at https://rssysu.github.io/AgroMind/.
Abstract:Recent advancements in large language models (LLMs) have sparked considerable interest in automated theorem proving and a prominent line of research integrates stepwise LLM-based provers into tree search. In this paper, we introduce a novel proof-state exploration approach for training data synthesis, designed to produce diverse tactics across a wide range of intermediate proof states, thereby facilitating effective one-shot fine-tuning of LLM as the policy model. We also propose an adaptive beam size strategy, which effectively takes advantage of our data synthesis method and achieves a trade-off between exploration and exploitation during tree search. Evaluations on the MiniF2F and ProofNet benchmarks demonstrate that our method outperforms strong baselines under the stringent Pass@1 metric, attaining an average pass rate of $60.74\%$ on MiniF2F and $21.18\%$ on ProofNet. These results underscore the impact of large-scale synthetic data in advancing automated theorem proving.
Abstract:This article investigates the application of pinching-antenna systems (PASS) in multiuser multiple-input single-output (MISO) communications. Two sum-rate maximization problems are formulated under minimum mean square error (MMSE) decoding, with and without successive interference cancellation (SIC). To address the joint optimization of pinching antenna locations and user transmit powers, a fractional programming-based approach is proposed. Numerical results validate the effectiveness of the proposed method and show that PASS can significantly enhance uplink sum-rate performance compared to conventional fixed-antenna designs.
Abstract:With the increasing need for facial behavior analysis, semi-supervised AU intensity estimation using only keyframe annotations has emerged as a practical and effective solution to relieve the burden of annotation. However, the lack of annotations makes the spurious correlation problem caused by AU co-occurrences and subject variation much more prominent, leading to non-robust intensity estimation that is entangled among AUs and biased among subjects. We observe that trend information inherent in keyframe annotations could act as extra supervision and raising the awareness of AU-specific facial appearance changing trends during training is the key to learning invariant AU-specific features. To this end, we propose \textbf{T}rend-\textbf{A}ware \textbf{S}upervision (TAS), which pursues three kinds of trend awareness, including intra-trend ranking awareness, intra-trend speed awareness, and inter-trend subject awareness. TAS alleviates the spurious correlation problem by raising trend awareness during training to learn AU-specific features that represent the corresponding facial appearance changes, to achieve intensity estimation invariance. Experiments conducted on two commonly used AU benchmark datasets, BP4D and DISFA, show the effectiveness of each kind of awareness. And under trend-aware supervision, the performance can be improved without extra computational or storage costs during inference.
Abstract:Multimodal Large Language Models (MLLMs) have experienced rapid progress in visual recognition tasks in recent years. Given their potential integration into many critical applications, it is important to understand the limitations of their visual perception. In this work, we study whether MLLMs can perceive small visual details as effectively as large ones when answering questions about images. We observe that their performance is very sensitive to the size of the visual subject of the question, and further show that this effect is in fact causal by conducting an intervention study. Next, we study the attention patterns of MLLMs when answering visual questions, and intriguingly find that they consistently know where to look, even when they provide the wrong answer. Based on these findings, we then propose training-free visual intervention methods that leverage the internal knowledge of any MLLM itself, in the form of attention and gradient maps, to enhance its perception of small visual details. We evaluate our proposed methods on two widely-used MLLMs and seven visual question answering benchmarks and show that they can significantly improve MLLMs' accuracy without requiring any training. Our results elucidate the risk of applying MLLMs to visual recognition tasks concerning small details and indicate that visual intervention using the model's internal state is a promising direction to mitigate this risk.
Abstract:The ever-growing demand for higher data rates in optical communication systems necessitates the development of advanced modulation formats capable of significantly enhancing system performance. In this work, we propose a novel modulation format derived from the Kramers--Kronig relations. This scheme effectively reduces the complexity of digital filtering and alleviates the demands on the digital-to-analog converter, offering a practical solution for high speed optical communication. The proposed modulation format was rigorously validated through experimental investigations using an optical wireless link. The results demonstrate a notable improvement in bit error rate (BER) performance and receiver sensitivity compared to PAM-4 and CAP-16 modulation schemes, with enhancements of 0.6 dB and 1.5 dB in receiver sensitivity, respectively. These improvements enable higher data transmission rates, positioning the Kramers--Kronig relations-based modulation format as a promising alternative to existing modulation techniques. Its potential to enhance the efficiency and capacity of optical communication systems is clearly evident. Future work will focus on extending its application to more complex scenarios, such as high-speed underwater optical communication systems, where advanced modulation formats are critical for overcoming bandwidth limitations.