Abstract:The effectiveness and efficiency of modeling complex spectral-spatial relations are both crucial for Hyperspectral image (HSI) classification. Most existing methods based on CNNs and transformers still suffer from heavy computational burdens and have room for improvement in capturing the global-local spectral-spatial feature representation. To this end, we propose a novel lightweight parallel design called lightweight dual-stream Mamba-convolution network (DualMamba) for HSI classification. Specifically, a parallel lightweight Mamba and CNN block are first developed to extract global and local spectral-spatial features. First, the cross-attention spectral-spatial Mamba module is proposed to leverage the global modeling of Mamba at linear complexity. Within this module, dynamic positional embedding is designed to enhance the spatial location information of visual sequences. The lightweight spectral/spatial Mamba blocks comprise an efficient scanning strategy and a lightweight Mamba design to efficiently extract global spectral-spatial features. And the cross-attention spectral-spatial fusion is designed to learn cross-correlation and fuse spectral-spatial features. Second, the lightweight spectral-spatial residual convolution module is proposed with lightweight spectral and spatial branches to extract local spectral-spatial features through residual learning. Finally, the adaptive global-local fusion is proposed to dynamically combine global Mamba features and local convolution features for a global-local spectral-spatial representation. Compared with state-of-the-art HSI classification methods, experimental results demonstrate that DualMamba achieves significant classification accuracy on three public HSI datasets and a superior reduction in model parameters and floating point operations (FLOPs).
Abstract:Estimating the 3D structure of the human body from natural scenes is a fundamental aspect of visual perception. This task carries great importance for fields like AIGC and human-robot interaction. In practice, 3D human pose estimation in real-world settings is a critical initial step in solving this problem. However, the current datasets, often collected under controlled laboratory conditions using complex motion capture equipment and unvarying backgrounds, are insufficient. The absence of real-world datasets is stalling the progress of this crucial task. To facilitate the development of 3D pose estimation, we present FreeMan, the first large-scale, real-world multi-view dataset. FreeMan was captured by synchronizing 8 smartphones across diverse scenarios. It comprises 11M frames from 8000 sequences, viewed from different perspectives. These sequences cover 40 subjects across 10 different scenarios, each with varying lighting conditions. We have also established an automated, precise labeling pipeline that allows for large-scale processing efficiently. We provide comprehensive evaluation baselines for a range of tasks, underlining the significant challenges posed by FreeMan. Further evaluations of standard indoor/outdoor human sensing datasets reveal that FreeMan offers robust representation transferability in real and complex scenes. FreeMan is now publicly available at https://wangjiongw.github.io/freeman.
Abstract:Large language models have become a potential pathway toward achieving artificial general intelligence. Recent works on multi-modal large language models have demonstrated their effectiveness in handling visual modalities. In this work, we extend the research of MLLMs to point clouds and present the LAMM-Dataset and LAMM-Benchmark for 2D image and 3D point cloud understanding. We also establish an extensible framework to facilitate the extension of MLLMs to additional modalities. Our main contribution is three-fold: 1) We present the LAMM-Dataset and LAMM-Benchmark, which cover almost all high-level vision tasks for 2D and 3D vision. Extensive experiments validate the effectiveness of our dataset and benchmark. 2) We demonstrate the detailed methods of constructing instruction-tuning datasets and benchmarks for MLLMs, which will enable future research on MLLMs to scale up and extend to other domains, tasks, and modalities faster. 3) We provide a primary but potential MLLM training framework optimized for modalities' extension. We also provide baseline models, comprehensive experimental observations, and analysis to accelerate future research. Codes and datasets are now available at https://github.com/OpenLAMM/LAMM.
Abstract:Set-based face recognition (SFR) aims to recognize the face sets in the unconstrained scenario, where the appearance of same identity may change dramatically with extreme variances (e.g., illumination, pose, expression). We argue that the two crucial issues in SFR, the face quality and burstiness, are both identity-irrelevant and variance-relevant. The quality and burstiness assessment are interfered with by the entanglement of identity, and the face recognition is interfered with by the entanglement of variance. Thus we propose to separate the identity features with the variance features in a light-weighted set-based disentanglement framework. Beyond disentanglement, the variance features are fully utilized to indicate face quality and burstiness in a set, rather than being discarded after training. To suppress face burstiness in the sets, we propose a vocabulary-based burst suppression (VBS) method which quantizes faces with a reference vocabulary. With interword and intra-word normalization operations on the assignment scores, the face burtisness degrees are appropriately estimated. The extensive illustrations and experiments demonstrate the effect of the disentanglement framework with VBS, which gets new state-of-the-art on the SFR benchmarks. The code will be released at https://github.com/Liubinggunzu/set_burstiness.
Abstract:DNN-based models achieve high performance in the speaker verification (SV) task with substantial computation costs. The model size is an essential concern in applying models on resource-constrained devices, while model compression for SV models has not been studied extensively in previous works. Weight quantization is exploited to compress DNN-based speaker embedding extraction models in this paper. Uniform and Powers-of-Two quantization are utilized in the experiments. The results on VoxCeleb show that the weight quantization can decrease the size of ECAPA-TDNN and ResNet by 4 times with insignificant performance decline. The quantized 4-bit ResNet achieves similar performance to the original model with an 8 times smaller size. We empirically show that the performance of ECAPA-TDNN is more sensitive than ResNet to quantization due to the difference in weight distribution. The experiments on CN-Celeb also demonstrate that quantized models are robust for SV in the language mismatch scenario.
Abstract:Multi-modal video question answering aims to predict correct answer and localize the temporal boundary relevant to the question. The temporal annotations of questions improve QA performance and interpretability of recent works, but they are usually empirical and costly. To avoid the temporal annotations, we devise a weakly supervised question grounding (WSQG) setting, where only QA annotations are used and the relevant temporal boundaries are generated according to the temporal attention scores. To substitute the temporal annotations, we transform the correspondence between frames and subtitles to Frame-Subtitle (FS) self-supervision, which helps to optimize the temporal attention scores and hence improve the video-language understanding in VideoQA model. The extensive experiments on TVQA and TVQA+ datasets demonstrate that the proposed WSQG strategy gets comparable performance on question grounding, and the FS self-supervision helps improve the question answering and grounding performance on both QA-supervision only and full-supervision settings.
Abstract:Weakly Supervised Object Localization (WSOL), which aims to localize objects by only using image-level labels, has attracted much attention because of its low annotation cost in real applications. Recent studies leverage the advantage of self-attention in visual Transformer for long-range dependency to re-active semantic regions, aiming to avoid partial activation in traditional class activation mapping (CAM). However, the long-range modeling in Transformer neglects the inherent spatial coherence of the object, and it usually diffuses the semantic-aware regions far from the object boundary, making localization results significantly larger or far smaller. To address such an issue, we introduce a simple yet effective Spatial Calibration Module (SCM) for accurate WSOL, incorporating semantic similarities of patch tokens and their spatial relationships into a unified diffusion model. Specifically, we introduce a learnable parameter to dynamically adjust the semantic correlations and spatial context intensities for effective information propagation. In practice, SCM is designed as an external module of Transformer, and can be removed during inference to reduce the computation cost. The object-sensitive localization ability is implicitly embedded into the Transformer encoder through optimization in the training phase. It enables the generated attention maps to capture the sharper object boundaries and filter the object-irrelevant background area. Extensive experimental results demonstrate the effectiveness of the proposed method, which significantly outperforms its counterpart TS-CAM on both CUB-200 and ImageNet-1K benchmarks. The code is available at https://github.com/164140757/SCM.
Abstract:For face presentation attack detection (PAD), most of the spoofing cues are subtle, local image patterns (e.g., local image distortion, 3D mask edge and cut photo edges). The representations of existing PAD works with simple global pooling method, however, lose the local feature discriminability. In this paper, the VLAD aggregation method is adopted to quantize local features with visual vocabulary locally partitioning the feature space, and hence preserve the local discriminability. We further propose the vocabulary separation and adaptation method to modify VLAD for cross-domain PADtask. The proposed vocabulary separation method divides vocabulary into domain-shared and domain-specific visual words to cope with the diversity of live and attack faces under the cross-domain scenario. The proposed vocabulary adaptation method imitates the maximization step of the k-means algorithm in the end-to-end training, which guarantees the visual words be close to the center of assigned local features and thus brings robust similarity measurement. We give illustrations and extensive experiments to demonstrate the effectiveness of VLAD with the proposed vocabulary separation and adaptation method on standard cross-domain PAD benchmarks. The codes are available at https://github.com/Liubinggunzu/VLAD-VSA.
Abstract:Automatically selecting exposure bracketing (images exposed differently) is important to obtain a high dynamic range image by using multi-exposure fusion. Unlike previous methods that have many restrictions such as requiring camera response function, sensor noise model, and a stream of preview images with different exposures (not accessible in some scenarios e.g. some mobile applications), we propose a novel deep neural network to automatically select exposure bracketing, named EBSNet, which is sufficiently flexible without having the above restrictions. EBSNet is formulated as a reinforced agent that is trained by maximizing rewards provided by a multi-exposure fusion network (MEFNet). By utilizing the illumination and semantic information extracted from just a single auto-exposure preview image, EBSNet can select an optimal exposure bracketing for multi-exposure fusion. EBSNet and MEFNet can be jointly trained to produce favorable results against recent state-of-the-art approaches. To facilitate future research, we provide a new benchmark dataset for multi-exposure selection and fusion.
Abstract:Visual place recognition is challenging in the urban environment and is usually viewed as a large scale image retrieval task. The intrinsic challenges in place recognition exist that the confusing objects such as cars and trees frequently occur in the complex urban scene, and buildings with repetitive structures may cause over-counting and the burstiness problem degrading the image representations. To address these problems, we present an Attention-based Pyramid Aggregation Network (APANet), which is trained in an end-to-end manner for place recognition. One main component of APANet, the spatial pyramid pooling, can effectively encode the multi-size buildings containing geo-information. The other one, the attention block, is adopted as a region evaluator for suppressing the confusing regional features while highlighting the discriminative ones. When testing, we further propose a simple yet effective PCA power whitening strategy, which significantly improves the widely used PCA whitening by reasonably limiting the impact of over-counting. Experimental evaluations demonstrate that the proposed APANet outperforms the state-of-the-art methods on two place recognition benchmarks, and generalizes well on standard image retrieval datasets.