Abstract:Document content analysis has been a crucial research area in computer vision. Despite significant advancements in methods such as OCR, layout detection, and formula recognition, existing open-source solutions struggle to consistently deliver high-quality content extraction due to the diversity in document types and content. To address these challenges, we present MinerU, an open-source solution for high-precision document content extraction. MinerU leverages the sophisticated PDF-Extract-Kit models to extract content from diverse documents effectively and employs finely-tuned preprocessing and postprocessing rules to ensure the accuracy of the final results. Experimental results demonstrate that MinerU consistently achieves high performance across various document types, significantly enhancing the quality and consistency of content extraction. The MinerU open-source project is available at https://github.com/opendatalab/MinerU.
Abstract:Text has become the predominant form of communication on social media, embedding a wealth of emotional nuances. Consequently, the extraction of emotional information from text is of paramount importance. Despite previous research making some progress, existing text sentiment analysis models still face challenges in integrating diverse semantic information and lack interpretability. To address these issues, we propose a quantum-inspired deep learning architecture that combines fundamental principles of quantum mechanics (QM principles) with deep learning models for text sentiment analysis. Specifically, we analyze the commonalities between text representation and QM principles to design a quantum-inspired text representation method and further develop a quantum-inspired text embedding layer. Additionally, we design a feature extraction layer based on long short-term memory (LSTM) networks and self-attention mechanisms (SAMs). Finally, we calculate the text density matrix using the quantum complex numbers principle and apply 2D-convolution neural networks (CNNs) for feature condensation and dimensionality reduction. Through a series of visualization, comparative, and ablation experiments, we demonstrate that our model not only shows significant advantages in accuracy and efficiency compared to previous related models but also achieves a certain level of interpretability by integrating QM principles. Our code is available at QISA.
Abstract:Multimodal semantic segmentation shows significant potential for enhancing segmentation accuracy in complex scenes. However, current methods often incorporate specialized feature fusion modules tailored to specific modalities, thereby restricting input flexibility and increasing the number of training parameters. To address these challenges, we propose StitchFusion, a straightforward yet effective modal fusion framework that integrates large-scale pre-trained models directly as encoders and feature fusers. This approach facilitates comprehensive multi-modal and multi-scale feature fusion, accommodating any visual modal inputs. Specifically, Our framework achieves modal integration during encoding by sharing multi-modal visual information. To enhance information exchange across modalities, we introduce a multi-directional adapter module (MultiAdapter) to enable cross-modal information transfer during encoding. By leveraging MultiAdapter to propagate multi-scale information across pre-trained encoders during the encoding process, StitchFusion achieves multi-modal visual information integration during encoding. Extensive comparative experiments demonstrate that our model achieves state-of-the-art performance on four multi-modal segmentation datasets with minimal additional parameters. Furthermore, the experimental integration of MultiAdapter with existing Feature Fusion Modules (FFMs) highlights their complementary nature. Our code is available at StitchFusion_repo.
Abstract:Effective imputation is a crucial preprocessing step for time series analysis. Despite the development of numerous deep learning algorithms for time series imputation, the community lacks standardized and comprehensive benchmark platforms to effectively evaluate imputation performance across different settings. Moreover, although many deep learning forecasting algorithms have demonstrated excellent performance, whether their modeling achievements can be transferred to time series imputation tasks remains unexplored. To bridge these gaps, we develop TSI-Bench, the first (to our knowledge) comprehensive benchmark suite for time series imputation utilizing deep learning techniques. The TSI-Bench pipeline standardizes experimental settings to enable fair evaluation of imputation algorithms and identification of meaningful insights into the influence of domain-appropriate missingness ratios and patterns on model performance. Furthermore, TSI-Bench innovatively provides a systematic paradigm to tailor time series forecasting algorithms for imputation purposes. Our extensive study across 34,804 experiments, 28 algorithms, and 8 datasets with diverse missingness scenarios demonstrates TSI-Bench's effectiveness in diverse downstream tasks and potential to unlock future directions in time series imputation research and analysis. The source code and experiment logs are available at https://github.com/WenjieDu/AwesomeImputation.
Abstract:Time-series forecasting (TSF) finds broad applications in real-world scenarios. Due to the dynamic nature of time-series data, it is crucial to equip TSF models with out-of-distribution (OOD) generalization abilities, as historical training data and future test data can have different distributions. In this paper, we aim to alleviate the inherent OOD problem in TSF via invariant learning. We identify fundamental challenges of invariant learning for TSF. First, the target variables in TSF may not be sufficiently determined by the input due to unobserved core variables in TSF, breaking the conventional assumption of invariant learning. Second, time-series datasets lack adequate environment labels, while existing environmental inference methods are not suitable for TSF. To address these challenges, we propose FOIL, a model-agnostic framework that enables timeseries Forecasting for Out-of-distribution generalization via Invariant Learning. FOIL employs a novel surrogate loss to mitigate the impact of unobserved variables. Further, FOIL implements a joint optimization by alternately inferring environments effectively with a multi-head network while preserving the temporal adjacency structure, and learning invariant representations across inferred environments for OOD generalized TSF. We demonstrate that the proposed FOIL significantly improves the performance of various TSF models, achieving gains of up to 85%.
Abstract:Time series data are ubiquitous across a wide range of real-world domains. While real-world time series analysis (TSA) requires human experts to integrate numerical series data with multimodal domain-specific knowledge, most existing TSA models rely solely on numerical data, overlooking the significance of information beyond numerical series. This oversight is due to the untapped potential of textual series data and the absence of a comprehensive, high-quality multimodal dataset. To overcome this obstacle, we introduce Time-MMD, the first multi-domain, multimodal time series dataset covering 9 primary data domains. Time-MMD ensures fine-grained modality alignment, eliminates data contamination, and provides high usability. Additionally, we develop MM-TSFlib, the first multimodal time-series forecasting (TSF) library, seamlessly pipelining multimodal TSF evaluations based on Time-MMD for in-depth analyses. Extensive experiments conducted on Time-MMD through MM-TSFlib demonstrate significant performance enhancements by extending unimodal TSF to multimodality, evidenced by over 15% mean squared error reduction in general, and up to 40% in domains with rich textual data. More importantly, our datasets and library revolutionize broader applications, impacts, research topics to advance TSA. The dataset and library are available at https://github.com/AdityaLab/Time-MMD and https://github.com/AdityaLab/MM-TSFlib.
Abstract:Pose-controllable character video generation is in high demand with extensive applications for fields such as automatic advertising and content creation on social media platforms. While existing character image animation methods using pose sequences and reference images have shown promising performance, they tend to struggle with incoherent animation in complex scenarios, such as multiple character animation and body occlusion. Additionally, current methods request large-scale high-quality videos with stable backgrounds and temporal consistency as training datasets, otherwise, their performance will greatly deteriorate. These two issues hinder the practical utilization of character image animation tools. In this paper, we propose a practical and robust framework Follow-Your-Pose v2, which can be trained on noisy open-sourced videos readily available on the internet. Multi-condition guiders are designed to address the challenges of background stability, body occlusion in multi-character generation, and consistency of character appearance. Moreover, to fill the gap of fair evaluation of multi-character pose animation, we propose a new benchmark comprising approximately 4,000 frames. Extensive experiments demonstrate that our approach outperforms state-of-the-art methods by a margin of over 35\% across 2 datasets and on 7 metrics. Meanwhile, qualitative assessments reveal a significant improvement in the quality of generated video, particularly in scenarios involving complex backgrounds and body occlusion of multi-character, suggesting the superiority of our approach.
Abstract:In the era of artificial intelligence, the diversity of data modalities and annotation formats often renders data unusable directly, requiring understanding and format conversion before it can be used by researchers or developers with different needs. To tackle this problem, this article introduces a framework called Dataset Description Language (DSDL) that aims to simplify dataset processing by providing a unified standard for AI datasets. DSDL adheres to the three basic practical principles of generic, portable, and extensible, using a unified standard to express data of different modalities and structures, facilitating the dissemination of AI data, and easily extending to new modalities and tasks. The standardized specifications of DSDL reduce the workload for users in data dissemination, processing, and usage. To further improve user convenience, we provide predefined DSDL templates for various tasks, convert mainstream datasets to comply with DSDL specifications, and provide comprehensive documentation and DSDL tools. These efforts aim to simplify the use of AI data, thereby improving the efficiency of AI development.
Abstract:Multimodal semantic segmentation is a pivotal component of computer vision and typically surpasses unimodal methods by utilizing rich information set from various sources.Current models frequently adopt modality-specific frameworks that inherently biases toward certain modalities. Although these biases might be advantageous in specific situations, they generally limit the adaptability of the models across different multimodal contexts, thereby potentially impairing performance. To address this issue, we leverage the inherent capabilities of the model itself to discover the optimal equilibrium in multimodal fusion and introduce U3M: An Unbiased Multiscale Modal Fusion Model for Multimodal Semantic Segmentation. Specifically, this method involves an unbiased integration of multimodal visual data. Additionally, we employ feature fusion at multiple scales to ensure the effective extraction and integration of both global and local features. Experimental results demonstrate that our approach achieves superior performance across multiple datasets, verifing its efficacy in enhancing the robustness and versatility of semantic segmentation in diverse settings. Our code is available at U3M-multimodal-semantic-segmentation.
Abstract:Time-series forecasting (TSF) finds broad applications in real-world scenarios. Prompting off-the-shelf Large Language Models (LLMs) demonstrates strong zero-shot TSF capabilities while preserving computational efficiency. However, existing prompting methods oversimplify TSF as language next-token predictions, overlooking its dynamic nature and lack of integration with state-of-the-art prompt strategies such as Chain-of-Thought. Thus, we propose LSTPrompt, a novel approach for prompting LLMs in zero-shot TSF tasks. LSTPrompt decomposes TSF into short-term and long-term forecasting sub-tasks, tailoring prompts to each. LSTPrompt guides LLMs to regularly reassess forecasting mechanisms to enhance adaptability. Extensive evaluations demonstrate consistently better performance of LSTPrompt than existing prompting methods, and competitive results compared to foundation TSF models.