Single-view 3D reconstruction is the process of estimating the 3D shape of an object from a single 2D image.
In modern dense 3D reconstruction, feed-forward systems (e.g., VGGT, pi3) focus on end-to-end matching and geometry prediction but do not explicitly output the novel view synthesis (NVS). Neural rendering-based approaches offer high-fidelity NVS and detailed geometry from posed images, yet they typically assume fixed camera poses and can be sensitive to pose errors. As a result, it remains non-trivial to obtain a single framework that can offer accurate poses, reliable depth, high-quality rendering, and accurate 3D surfaces from casually captured views. We present NeVStereo, a NeRF-driven NVS-stereo architecture that aims to jointly deliver camera poses, multi-view depth, novel view synthesis, and surface reconstruction from multi-view RGB-only inputs. NeVStereo combines NeRF-based NVS for stereo-friendly renderings, confidence-guided multi-view depth estimation, NeRF-coupled bundle adjustment for pose refinement, and an iterative refinement stage that updates both depth and the radiance field to improve geometric consistency. This design mitigated the common NeRF-based issues such as surface stacking, artifacts, and pose-depth coupling. Across indoor, outdoor, tabletop, and aerial benchmarks, our experiments indicate that NeVStereo achieves consistently strong zero-shot performance, with up to 36% lower depth error, 10.4% improved pose accuracy, 4.5% higher NVS fidelity, and state-of-the-art mesh quality (F1 91.93%, Chamfer 4.35 mm) compared to existing prestigious methods.
Amodal sensing is critical for various real-world sensing applications because it can recover the complete shapes of partially occluded objects in complex environments. Among various amodal sensing paradigms, wireless amodal sensing is a potential solution due to its advantages of environmental robustness, privacy preservation, and low cost. However, the sensing data obtained by wireless system is sparse for shape reconstruction because of the low spatial resolution, and this issue is further intensified in complex environments with occlusion. To address this issue, we propose a Reconfigurable Intelligent Surface (RIS)-aided wireless amodal sensing scheme that leverages a large-scale RIS to enhance the spatial resolution and create reflection paths that can bypass the obstacles. A generative learning model is also employed to reconstruct the complete shape based on the sensing data captured from the viewpoint of the RIS. In such a system, it is challenging to optimize the RIS phase shifts because the relationship between RIS phase shifts and amodal sensing accuracy is complex and the closed-form expression is unknown. To tackle this challenge, we develop an error prediction model that learns the mapping from RIS phase shifts to amodal sensing accuracy, and optimizes RIS phase shifts based on this mapping. Experimental results on the benchmark dataset show that our method achieves at least a 56.73% reduction in reconstruction error compared to conventional schemes under the same number of RIS configurations.
SAM3D enables scalable, open-world 3D reconstruction from complex scenes, yet its deployment is hindered by prohibitive inference latency. In this work, we conduct the \textbf{first systematic investigation} into its inference dynamics, revealing that generic acceleration strategies are brittle in this context. We demonstrate that these failures stem from neglecting the pipeline's inherent multi-level \textbf{heterogeneity}: the kinematic distinctiveness between shape and layout, the intrinsic sparsity of texture refinement, and the spectral variance across geometries. To address this, we present \textbf{Fast-SAM3D}, a training-free framework that dynamically aligns computation with instantaneous generation complexity. Our approach integrates three heterogeneity-aware mechanisms: (1) \textit{Modality-Aware Step Caching} to decouple structural evolution from sensitive layout updates; (2) \textit{Joint Spatiotemporal Token Carving} to concentrate refinement on high-entropy regions; and (3) \textit{Spectral-Aware Token Aggregation} to adapt decoding resolution. Extensive experiments demonstrate that Fast-SAM3D delivers up to \textbf{2.67$\times$} end-to-end speedup with negligible fidelity loss, establishing a new Pareto frontier for efficient single-view 3D generation. Our code is released in https://github.com/wlfeng0509/Fast-SAM3D.
Event cameras offer a considerable alternative to RGB cameras in many scenarios. While there are recent works on event-based novel-view synthesis, dense 3D mesh reconstruction remains scarcely explored and existing event-based techniques are severely limited in their 3D reconstruction accuracy. To address this limitation, we present EventNeuS, a self-supervised neural model for learning 3D representations from monocular colour event streams. Our approach, for the first time, combines 3D signed distance function and density field learning with event-based supervision. Furthermore, we introduce spherical harmonics encodings into our model for enhanced handling of view-dependent effects. EventNeuS outperforms existing approaches by a significant margin, achieving 34% lower Chamfer distance and 31% lower mean absolute error on average compared to the best previous method.
3D editing has emerged as a critical research area to provide users with flexible control over 3D assets. While current editing approaches predominantly focus on 3D Gaussian Splatting or multi-view images, the direct editing of 3D meshes remains underexplored. Prior attempts, such as VoxHammer, rely on voxel-based representations that suffer from limited resolution and necessitate labor-intensive 3D mask. To address these limitations, we propose \textbf{VecSet-Edit}, the first pipeline that leverages the high-fidelity VecSet Large Reconstruction Model (LRM) as a backbone for mesh editing. Our approach is grounded on a analysis of the spatial properties in VecSet tokens, revealing that token subsets govern distinct geometric regions. Based on this insight, we introduce Mask-guided Token Seeding and Attention-aligned Token Gating strategies to precisely localize target regions using only 2D image conditions. Also, considering the difference between VecSet diffusion process versus voxel we design a Drift-aware Token Pruning to reject geometric outliers during the denoising process. Finally, our Detail-preserving Texture Baking module ensures that we not only preserve the geometric details of original mesh but also the textural information. More details can be found in our project page: https://github.com/BlueDyee/VecSet-Edit/tree/main
Existing methods for human motion control in video generation typically rely on either 2D poses or explicit 3D parametric models (e.g., SMPL) as control signals. However, 2D poses rigidly bind motion to the driving viewpoint, precluding novel-view synthesis. Explicit 3D models, though structurally informative, suffer from inherent inaccuracies (e.g., depth ambiguity and inaccurate dynamics) which, when used as a strong constraint, override the powerful intrinsic 3D awareness of large-scale video generators. In this work, we revisit motion control from a 3D-aware perspective, advocating for an implicit, view-agnostic motion representation that naturally aligns with the generator's spatial priors rather than depending on externally reconstructed constraints. We introduce 3DiMo, which jointly trains a motion encoder with a pretrained video generator to distill driving frames into compact, view-agnostic motion tokens, injected semantically via cross-attention. To foster 3D awareness, we train with view-rich supervision (i.e., single-view, multi-view, and moving-camera videos), forcing motion consistency across diverse viewpoints. Additionally, we use auxiliary geometric supervision that leverages SMPL only for early initialization and is annealed to zero, enabling the model to transition from external 3D guidance to learning genuine 3D spatial motion understanding from the data and the generator's priors. Experiments confirm that 3DiMo faithfully reproduces driving motions with flexible, text-driven camera control, significantly surpassing existing methods in both motion fidelity and visual quality.
Three-dimensional (3D) reconstruction of ships is an important part of maritime monitoring, allowing improved visualization, inspection, and decision-making in real-world monitoring environments. However, most state-ofthe-art 3D reconstruction methods require multi-view supervision, annotated 3D ground truth, or are computationally intensive, making them impractical for real-time maritime deployment. In this work, we present an efficient pipeline for single-view 3D reconstruction of real ships by training entirely on synthetic data and requiring only a single view at inference. Our approach uses the Splatter Image network, which represents objects as sparse sets of 3D Gaussians for rapid and accurate reconstruction from single images. The model is first fine-tuned on synthetic ShapeNet vessels and further refined with a diverse custom dataset of 3D ships, bridging the domain gap between synthetic and real-world imagery. We integrate a state-of-the-art segmentation module based on YOLOv8 and custom preprocessing to ensure compatibility with the reconstruction network. Postprocessing steps include real-world scaling, centering, and orientation alignment, followed by georeferenced placement on an interactive web map using AIS metadata and homography-based mapping. Quantitative evaluation on synthetic validation data demonstrates strong reconstruction fidelity, while qualitative results on real maritime images from the ShipSG dataset confirm the potential for transfer to operational maritime settings. The final system provides interactive 3D inspection of real ships without requiring real-world 3D annotations. This pipeline provides an efficient, scalable solution for maritime monitoring and highlights a path toward real-time 3D ship visualization in practical applications. Interactive demo: https://dlr-mi.github.io/ship3d-demo/.
We present VRGaussianAvatar, an integrated system that enables real-time full-body 3D Gaussian Splatting (3DGS) avatars in virtual reality using only head-mounted display (HMD) tracking signals. The system adopts a parallel pipeline with a VR Frontend and a GA Backend. The VR Frontend uses inverse kinematics to estimate full-body pose and streams the resulting pose along with stereo camera parameters to the backend. The GA Backend stereoscopically renders a 3DGS avatar reconstructed from a single image. To improve stereo rendering efficiency, we introduce Binocular Batching, which jointly processes left and right eye views in a single batched pass to reduce redundant computation and support high-resolution VR displays. We evaluate VRGaussianAvatar with quantitative performance tests and a within-subject user study against image- and video-based mesh avatar baselines. Results show that VRGaussianAvatar sustains interactive VR performance and yields higher perceived appearance similarity, embodiment, and plausibility. Project page and source code are available at https://vrgaussianavatar.github.io.
Real-world robotic manipulation demands visuomotor policies capable of robust spatial scene understanding and strong generalization across diverse camera viewpoints. While recent advances in 3D-aware visual representations have shown promise, they still suffer from several key limitations, including reliance on multi-view observations during inference which is impractical in single-view restricted scenarios, incomplete scene modeling that fails to capture holistic and fine-grained geometric structures essential for precise manipulation, and lack of effective policy training strategies to retain and exploit the acquired 3D knowledge. To address these challenges, we present MethodName, a unified representation-policy learning framework for view-generalizable robotic manipulation. MethodName introduces a single-view 3D pretraining paradigm that leverages point cloud reconstruction and feed-forward gaussian splatting under multi-view supervision to learn holistic geometric representations. During policy learning, MethodName performs multi-step distillation to preserve the pretrained geometric understanding and effectively transfer it to manipulation skills. We conduct experiments on 12 RLBench tasks, where our approach outperforms the previous state-of-the-art method by 12.7% in average success rate. Further evaluation on six representative tasks demonstrates strong zero-shot view generalization, with success rate drops of only 22.0% and 29.7% under moderate and large viewpoint shifts respectively, whereas the state-of-the-art method suffers larger decreases of 41.6% and 51.5%.
The rise of chronic diseases related to diet, such as obesity and diabetes, emphasizes the need for accurate monitoring of food intake. While AI-driven dietary assessment has made strides in recent years, the ill-posed nature of recovering size (portion) information from monocular images for accurate estimation of ``how much did you eat?'' is a pressing challenge. Some 3D reconstruction methods have achieved impressive geometric reconstruction but fail to recover the crucial real-world scale of the reconstructed object, limiting its usage in precision nutrition. In this paper, we bridge the gap between 3D computer vision and digital health by proposing a method that recovers a true-to-scale 3D reconstructed object from a monocular image. Our approach leverages rich visual features extracted from models trained on large-scale datasets to estimate the scale of the reconstructed object. This learned scale enables us to convert single-view 3D reconstructions into true-to-life, physically meaningful models. Extensive experiments and ablation studies on two publicly available datasets show that our method consistently outperforms existing techniques, achieving nearly a 30% reduction in mean absolute volume-estimation error, showcasing its potential to enhance the domain of precision nutrition. Code: https://gitlab.com/viper-purdue/size-matters