Abstract:We present a survey on 4D generation and reconstruction, a fast-evolving subfield of computer graphics whose developments have been propelled by recent advances in neural fields, geometric and motion deep learning, as well 3D generative artificial intelligence (GenAI). While our survey is not the first of its kind, we build our coverage of the domain from a unique and distinctive perspective of 4D representations\/}, to model 3D geometry evolving over time while exhibiting motion and interaction. Specifically, instead of offering an exhaustive enumeration of many works, we take a more selective approach by focusing on representative works to highlight both the desirable properties and ensuing challenges of each representation under different computation, application, and data scenarios. The main take-away message we aim to convey to the readers is on how to select and then customize the appropriate 4D representations for their tasks. Organizationally, we separate the 4D representations based on three key pillars: geometry, motion, and interaction. Our discourse will not only encompass the most popular representations of today, such as neural radiance fields (NeRFs) and 3D Gaussian Splatting (3DGS), but also bring attention to relatively under-explored representations in the 4D context, such as structured models and long-range motions. Throughout our survey, we will reprise the role of large language models (LLMs) and video foundational models (VFMs) in a variety of 4D applications, while steering our discussion towards their current limitations and how they can be addressed. We also provide a dedicated coverage on what 4D datasets are currently available, as well as what is lacking, in driving the subfield forward. Project page:https://mingrui-zhao.github.io/4DRep-GMI/
Abstract:We introduce adaptive view planning to multi-view synthesis, aiming to improve both occlusion revelation and 3D consistency for single-view 3D reconstruction. Instead of generating an unordered set of views independently or simultaneously, we generate a sequence of views, leveraging temporal consistency to enhance 3D coherence. Most importantly, our view sequence is not determined by a pre-determined camera setup. Instead, we compute an adaptive camera trajectory (ACT), specifically, an orbit of camera views, which maximizes the visibility of occluded regions of the 3D object to be reconstructed. Once the best orbit is found, we feed it to a video diffusion model to generate novel views around the orbit, which in turn, are passed to a multi-view 3D reconstruction model to obtain the final reconstruction. Our multi-view synthesis pipeline is quite efficient since it involves no run-time training/optimization, only forward inferences by applying the pre-trained models for occlusion analysis and multi-view synthesis. Our method predicts camera trajectories that reveal occlusions effectively and produce consistent novel views, significantly improving 3D reconstruction over SOTA on the unseen GSO dataset, both quantitatively and qualitatively.




Abstract:Shape abstraction is an important task for simplifying complex geometric structures while retaining essential features. Sweep surfaces, commonly found in human-made objects, aid in this process by effectively capturing and representing object geometry, thereby facilitating abstraction. In this paper, we introduce \papername, a novel approach to shape abstraction through sweep surfaces. We propose an effective parameterization for sweep surfaces, utilizing superellipses for profile representation and B-spline curves for the axis. This compact representation, requiring as few as 14 float numbers, facilitates intuitive and interactive editing while preserving shape details effectively. Additionally, by introducing a differentiable neural sweeper and an encoder-decoder architecture, we demonstrate the ability to predict sweep surface representations without supervision. We show the superiority of our model through several quantitative and qualitative experiments throughout the paper. Our code is available at https://mingrui-zhao.github.io/SweepNet/
Abstract:Diffusion models have enabled high-quality, conditional image editing capabilities. We propose to expand their arsenal, and demonstrate that off-the-shelf diffusion models can be used for a wide range of cross-domain compositing tasks. Among numerous others, these include image blending, object immersion, texture-replacement and even CG2Real translation or stylization. We employ a localized, iterative refinement scheme which infuses the injected objects with contextual information derived from the background scene, and enables control over the degree and types of changes the object may undergo. We conduct a range of qualitative and quantitative comparisons to prior work, and exhibit that our method produces higher quality and realistic results without requiring any annotations or training. Finally, we demonstrate how our method may be used for data augmentation of downstream tasks.