Alert button
Picture for Bo Dai

Bo Dai

Alert button

BerfScene: Bev-conditioned Equivariant Radiance Fields for Infinite 3D Scene Generation

Dec 04, 2023
Qihang Zhang, Yinghao Xu, Yujun Shen, Bo Dai, Bolei Zhou, Ceyuan Yang

Generating large-scale 3D scenes cannot simply apply existing 3D object synthesis technique since 3D scenes usually hold complex spatial configurations and consist of a number of objects at varying scales. We thus propose a practical and efficient 3D representation that incorporates an equivariant radiance field with the guidance of a bird's-eye view (BEV) map. Concretely, objects of synthesized 3D scenes could be easily manipulated through steering the corresponding BEV maps. Moreover, by adequately incorporating positional encoding and low-pass filters into the generator, the representation becomes equivariant to the given BEV map. Such equivariance allows us to produce large-scale, even infinite-scale, 3D scenes via synthesizing local scenes and then stitching them with smooth consistency. Extensive experiments on 3D scene datasets demonstrate the effectiveness of our approach. Our project website is at https://zqh0253.github.io/BerfScene/.

Viaarxiv icon

Scaffold-GS: Structured 3D Gaussians for View-Adaptive Rendering

Nov 30, 2023
Tao Lu, Mulin Yu, Linning Xu, Yuanbo Xiangli, Limin Wang, Dahua Lin, Bo Dai

Neural rendering methods have significantly advanced photo-realistic 3D scene rendering in various academic and industrial applications. The recent 3D Gaussian Splatting method has achieved the state-of-the-art rendering quality and speed combining the benefits of both primitive-based representations and volumetric representations. However, it often leads to heavily redundant Gaussians that try to fit every training view, neglecting the underlying scene geometry. Consequently, the resulting model becomes less robust to significant view changes, texture-less area and lighting effects. We introduce Scaffold-GS, which uses anchor points to distribute local 3D Gaussians, and predicts their attributes on-the-fly based on viewing direction and distance within the view frustum. Anchor growing and pruning strategies are developed based on the importance of neural Gaussians to reliably improve the scene coverage. We show that our method effectively reduces redundant Gaussians while delivering high-quality rendering. We also demonstrates an enhanced capability to accommodate scenes with varying levels-of-detail and view-dependent observations, without sacrificing the rendering speed.

* Project page: https://city-super.github.io/scaffold-gs/ 
Viaarxiv icon

Cinematic Behavior Transfer via NeRF-based Differentiable Filming

Nov 29, 2023
Xuekun Jiang, Anyi Rao, Jingbo Wang, Dahua Lin, Bo Dai

In the evolving landscape of digital media and video production, the precise manipulation and reproduction of visual elements like camera movements and character actions are highly desired. Existing SLAM methods face limitations in dynamic scenes and human pose estimation often focuses on 2D projections, neglecting 3D statuses. To address these issues, we first introduce a reverse filming behavior estimation technique. It optimizes camera trajectories by leveraging NeRF as a differentiable renderer and refining SMPL tracks. We then introduce a cinematic transfer pipeline that is able to transfer various shot types to a new 2D video or a 3D virtual environment. The incorporation of 3D engine workflow enables superior rendering and control abilities, which also achieves a higher rating in the user study.

* Project Page: https://virtualfilmstudio.github.io/projects/cinetransfer 
Viaarxiv icon

SparseCtrl: Adding Sparse Controls to Text-to-Video Diffusion Models

Nov 28, 2023
Yuwei Guo, Ceyuan Yang, Anyi Rao, Maneesh Agrawala, Dahua Lin, Bo Dai

The development of text-to-video (T2V), i.e., generating videos with a given text prompt, has been significantly advanced in recent years. However, relying solely on text prompts often results in ambiguous frame composition due to spatial uncertainty. The research community thus leverages the dense structure signals, e.g., per-frame depth/edge sequences, to enhance controllability, whose collection accordingly increases the burden of inference. In this work, we present SparseCtrl to enable flexible structure control with temporally sparse signals, requiring only one or a few inputs, as shown in Figure 1. It incorporates an additional condition encoder to process these sparse signals while leaving the pre-trained T2V model untouched. The proposed approach is compatible with various modalities, including sketches, depth maps, and RGB images, providing more practical control for video generation and promoting applications such as storyboarding, depth rendering, keyframe animation, and interpolation. Extensive experiments demonstrate the generalization of SparseCtrl on both original and personalized T2V generators. Codes and models will be publicly available at https://guoyww.github.io/projects/SparseCtrl .

* Project page: https://guoyww.github.io/projects/SparseCtrl 
Viaarxiv icon

InterControl: Generate Human Motion Interactions by Controlling Every Joint

Nov 27, 2023
Zhenzhi Wang, Jingbo Wang, Dahua Lin, Bo Dai

Text-conditioned human motion generation model has achieved great progress by introducing diffusion models and corresponding control signals. However, the interaction between humans are still under explored. To model interactions of arbitrary number of humans, we define interactions as human joint pairs that are either in contact or separated, and leverage {\em Large Language Model (LLM) Planner} to translate interaction descriptions into contact plans. Based on the contact plans, interaction generation could be achieved by spatially controllable motion generation methods by taking joint contacts as spatial conditions. We present a novel approach named InterControl for flexible spatial control of every joint in every person at any time by leveraging motion diffusion model only trained on single-person data. We incorporate a motion controlnet to generate coherent and realistic motions given sparse spatial control signals and a loss guidance module to precisely align any joint to the desired position in a classifier guidance manner via Inverse Kinematics (IK). Extensive experiments on HumanML3D and KIT-ML dataset demonstrate its effectiveness in versatile joint control. We also collect data of joint contact pairs by LLMs to show InterControl's ability in human interaction generation.

* Generate human interactions with only single-person motion diffusion model via LLM generated joint contact pairs, code https://github.com/zhenzhiwang/intercontrol 
Viaarxiv icon

Point Cloud Pre-training with Diffusion Models

Nov 25, 2023
Xiao Zheng, Xiaoshui Huang, Guofeng Mei, Yuenan Hou, Zhaoyang Lyu, Bo Dai, Wanli Ouyang, Yongshun Gong

Pre-training a model and then fine-tuning it on downstream tasks has demonstrated significant success in the 2D image and NLP domains. However, due to the unordered and non-uniform density characteristics of point clouds, it is non-trivial to explore the prior knowledge of point clouds and pre-train a point cloud backbone. In this paper, we propose a novel pre-training method called Point cloud Diffusion pre-training (PointDif). We consider the point cloud pre-training task as a conditional point-to-point generation problem and introduce a conditional point generator. This generator aggregates the features extracted by the backbone and employs them as the condition to guide the point-to-point recovery from the noisy point cloud, thereby assisting the backbone in capturing both local and global geometric priors as well as the global point density distribution of the object. We also present a recurrent uniform sampling optimization strategy, which enables the model to uniformly recover from various noise levels and learn from balanced supervision. Our PointDif achieves substantial improvement across various real-world datasets for diverse downstream tasks such as classification, segmentation and detection. Specifically, PointDif attains 70.0% mIoU on S3DIS Area 5 for the segmentation task and achieves an average improvement of 2.4% on ScanObjectNN for the classification task compared to TAP. Furthermore, our pre-training framework can be flexibly applied to diverse point cloud backbones and bring considerable gains.

Viaarxiv icon

Provable Representation with Efficient Planning for Partially Observable Reinforcement Learning

Nov 20, 2023
Hongming Zhang, Tongzheng Ren, Chenjun Xiao, Dale Schuurmans, Bo Dai

In real-world reinforcement learning problems, the state information is often only partially observable, which breaks the basic assumption in Markov decision processes, and thus, leads to inferior performances. Partially Observable Markov Decision Processes have been introduced to explicitly take the issue into account for learning, exploration, and planning, but presenting significant computational and statistical challenges. To address these difficulties, we exploit the representation view, which leads to a coherent design framework for a practically tractable reinforcement learning algorithm upon partial observations. We provide a theoretical analysis for justifying the statistical efficiency of the proposed algorithm. We also empirically demonstrate the proposed algorithm can surpass state-of-the-art performance with partial observations across various benchmarks, therefore, pushing reliable reinforcement learning towards more practical applications.

* The first two authors contribute equally 
Viaarxiv icon

On Task-personalized Multimodal Few-shot Learning for Visually-rich Document Entity Retrieval

Nov 01, 2023
Jiayi Chen, Hanjun Dai, Bo Dai, Aidong Zhang, Wei Wei

Visually-rich document entity retrieval (VDER), which extracts key information (e.g. date, address) from document images like invoices and receipts, has become an important topic in industrial NLP applications. The emergence of new document types at a constant pace, each with its unique entity types, presents a unique challenge: many documents contain unseen entity types that occur only a couple of times. Addressing this challenge requires models to have the ability of learning entities in a few-shot manner. However, prior works for Few-shot VDER mainly address the problem at the document level with a predefined global entity space, which doesn't account for the entity-level few-shot scenario: target entity types are locally personalized by each task and entity occurrences vary significantly among documents. To address this unexplored scenario, this paper studies a novel entity-level few-shot VDER task. The challenges lie in the uniqueness of the label space for each task and the increased complexity of out-of-distribution (OOD) contents. To tackle this novel task, we present a task-aware meta-learning based framework, with a central focus on achieving effective task personalization that distinguishes between in-task and out-of-task distribution. Specifically, we adopt a hierarchical decoder (HC) and employ contrastive learning (ContrastProtoNet) to achieve this goal. Furthermore, we introduce a new dataset, FewVEX, to boost future research in the field of entity-level few-shot VDER. Experimental results demonstrate our approaches significantly improve the robustness of popular meta-learning baselines.

* Findings of the Association for Computational Linguistics: EMNLP 2023  
* 20 pages, 6 figures; regular long paper, EMNLP 2023 
Viaarxiv icon

MatrixCity: A Large-scale City Dataset for City-scale Neural Rendering and Beyond

Sep 28, 2023
Yixuan Li, Lihan Jiang, Linning Xu, Yuanbo Xiangli, Zhenzhi Wang, Dahua Lin, Bo Dai

Neural radiance fields (NeRF) and its subsequent variants have led to remarkable progress in neural rendering. While most of recent neural rendering works focus on objects and small-scale scenes, developing neural rendering methods for city-scale scenes is of great potential in many real-world applications. However, this line of research is impeded by the absence of a comprehensive and high-quality dataset, yet collecting such a dataset over real city-scale scenes is costly, sensitive, and technically difficult. To this end, we build a large-scale, comprehensive, and high-quality synthetic dataset for city-scale neural rendering researches. Leveraging the Unreal Engine 5 City Sample project, we develop a pipeline to easily collect aerial and street city views, accompanied by ground-truth camera poses and a range of additional data modalities. Flexible controls over environmental factors like light, weather, human and car crowd are also available in our pipeline, supporting the need of various tasks covering city-scale neural rendering and beyond. The resulting pilot dataset, MatrixCity, contains 67k aerial images and 452k street images from two city maps of total size $28km^2$. On top of MatrixCity, a thorough benchmark is also conducted, which not only reveals unique challenges of the task of city-scale neural rendering, but also highlights potential improvements for future works. The dataset and code will be publicly available at our project page: https://city-super.github.io/matrixcity/.

* Accepted to ICCV 2023. Project page: $\href{https://city-super.github.io/matrixcity/}{this\, https\, URL}$ 
Viaarxiv icon

OrthoPlanes: A Novel Representation for Better 3D-Awareness of GANs

Sep 27, 2023
Honglin He, Zhuoqian Yang, Shikai Li, Bo Dai, Wayne Wu

We present a new method for generating realistic and view-consistent images with fine geometry from 2D image collections. Our method proposes a hybrid explicit-implicit representation called \textbf{OrthoPlanes}, which encodes fine-grained 3D information in feature maps that can be efficiently generated by modifying 2D StyleGANs. Compared to previous representations, our method has better scalability and expressiveness with clear and explicit information. As a result, our method can handle more challenging view-angles and synthesize articulated objects with high spatial degree of freedom. Experiments demonstrate that our method achieves state-of-the-art results on FFHQ and SHHQ datasets, both quantitatively and qualitatively. Project page: \url{https://orthoplanes.github.io/}.

Viaarxiv icon