University of Nottingham Ningbo China
Abstract:Large Language Models (LLMs) achieve strong performance across diverse tasks but face deployment challenges due to their massive size. Structured pruning offers acceleration benefits but leads to significant performance degradation. Recent PCA-based pruning methods have alleviated this issue by retaining key activation components, but are only applied between modules in order to fuse the transformation matrix, which introduces extra parameters and severely disrupts activation distributions due to residual connections. To address these issues, we propose IntraSlice, a framework that applies block-wise module-intra PCA compression pruning. By leveraging the structural characteristics of Transformer modules, we design an approximate PCA method whose transformation matrices can be fully fused into the model without additional parameters. We also introduce a PCA-based global pruning ratio estimator that further considers the distribution of compressed activations, building on conventional module importance. We validate our method on Llama2, Llama3, and Phi series across various language benchmarks. Experimental results demonstrate that our approach achieves superior compression performance compared to recent baselines at the same compression ratio or inference speed.
Abstract:Recent generative models have achieved remarkable progress in image editing. However, existing systems and benchmarks remain largely text-guided. In contrast, human communication is inherently multimodal, where visual instructions such as sketches efficiently convey spatial and structural intent. To address this gap, we introduce VIBE, the Visual Instruction Benchmark for Image Editing with a three-level interaction hierarchy that captures deictic grounding, morphological manipulation, and causal reasoning. Across these levels, we curate high-quality and diverse test cases that reflect progressively increasing complexity in visual instruction following. We further propose a robust LMM-as-a-judge evaluation framework with task-specific metrics to enable scalable and fine-grained assessment. Through a comprehensive evaluation of 17 representative open-source and proprietary image editing models, we find that proprietary models exhibit early-stage visual instruction-following capabilities and consistently outperform open-source models. However, performance degrades markedly with increasing task difficulty even for the strongest systems, highlighting promising directions for future research.
Abstract:Speculative decoding (SD) is a powerful technique for accelerating the inference process of large language models (LLMs) without sacrificing accuracy. Typically, SD employs a small draft model to generate a fixed number of draft tokens, which are then verified in parallel by the target model. However, our experiments reveal that the optimal draft length varies significantly across different decoding steps. This variation suggests that using a fixed draft length limits the potential for further improvements in decoding speed. To address this challenge, we propose Pacer, a novel approach that dynamically controls draft length using a lightweight, trainable pre-verification layer. This layer pre-verifies draft tokens blockwise before they are sent to the target model, allowing the draft model to stop token generation if the blockwise pre-verification fails. We implement Pacer on multiple SD model pairs and evaluate its performance across various benchmarks. Our results demonstrate that Pacer achieves up to 2.66x Speedup over autoregressive decoding and consistently outperforms standard speculative decoding. Furthermore, when integrated with Ouroboros, Pacer attains up to 3.09x Speedup.
Abstract:Cloud contamination severely degrades the usability of remote sensing imagery and poses a fundamental challenge for downstream Earth observation tasks. Recently, diffusion-based models have emerged as a dominant paradigm for remote sensing cloud removal due to their strong generative capability and stable optimization. However, existing diffusion-based approaches often suffer from limited sampling efficiency and insufficient exploitation of structural and temporal priors in multi-temporal remote sensing scenarios. In this work, we propose SADER, a structure-aware diffusion framework for multi-temporal remote sensing cloud removal. SADER first develops a scalable Multi-Temporal Conditional Diffusion Network (MTCDN) to fully capture multi-temporal and multimodal correlations via temporal fusion and hybrid attention. Then, a cloud-aware attention loss is introduced to emphasize cloud-dominated regions by accounting for cloud thickness and brightness discrepancies. In addition, a deterministic resampling strategy is designed for continuous diffusion models to iteratively refine samples under fixed sampling steps by replacing outliers through guided correction. Extensive experiments on multiple multi-temporal datasets demonstrate that SADER consistently outperforms state-of-the-art cloud removal methods across all evaluation metrics. The code of SADER is publicly available at https://github.com/zyfzs0/SADER.
Abstract:Large language models (LLMs) have enabled rapid progress in automatic heuristic discovery (AHD), yet most existing methods are predominantly limited by static evaluation against fixed instance distributions, leading to potential overfitting and poor generalization under distributional shifts. We propose Algorithm Space Response Oracles (ASRO), a game-theoretic framework that reframes heuristic discovery as a program level co-evolution between solver and instance generator. ASRO models their interaction as a two-player zero-sum game, maintains growing strategy pools on both sides, and iteratively expands them via LLM-based best-response oracles against mixed opponent meta-strategies, thereby replacing static evaluation with an adaptive, self-generated curriculum. Across multiple combinatorial optimization domains, ASRO consistently outperforms static-training AHD baselines built on the same program search mechanisms, achieving substantially improved generalization and robustness on diverse and out-of-distribution instances.
Abstract:Multi-stage ML inference pipelines are difficult to autoscale due to heterogeneous resources, cross-stage coupling, and dynamic bottleneck migration. We present SAIR, an autoscaling framework that uses an LLM as an in-context reinforcement learning controller, improving its policy online from reward-labeled interaction histories without gradient updates. SAIR combines Pareto-dominance reward shaping with a provable separation margin, surprisal-guided experience retrieval for context efficiency, and fine-grained GPU rate control via user-space CUDA interception. We provide regret analysis decomposing error into retrieval coverage and LLM selection components. On four ML serving pipelines under three workload patterns, SAIR achieves the best or tied-best P99 latency and effective resource cost among deployed baselines, improving P99 by up to 50% and reducing effective cost by up to 97% (under GPU rate-control assumptions), with 86% bottleneck detection accuracy and no offline training.
Abstract:Algorithm extraction aims to synthesize executable programs directly from models trained on specific algorithmic tasks, enabling de novo algorithm discovery without relying on human-written code. However, extending this paradigm to Transformer is hindered by superposition, where entangled features encoded in overlapping directions obstruct the extraction of symbolic expressions. In this work, we propose the Discrete Transformer, an architecture explicitly engineered to bridge the gap between continuous representations and discrete symbolic logic. By enforcing a strict functional disentanglement, which constrains Numerical Attention to information routing and Numerical MLP to element-wise arithmetic, and employing temperature-annealed sampling, our method effectively facilitates the extraction of human-readable programs. Empirically, the Discrete Transformer not only achieves performance comparable to RNN-based baselines but crucially extends interpretability to continuous variable domains. Moreover, our analysis of the annealing process shows that the efficient discrete search undergoes a clear phase transition from exploration to exploitation. We further demonstrate that our method enables fine-grained control over synthesized programs by imposing inductive biases. Collectively, these findings establish the Discrete Transformer as a robust framework for demonstration-free algorithm discovery, offering a rigorous pathway toward Transformer interpretability.
Abstract:Metal artifacts in Dental CBCT severely obscure anatomical structures, hindering diagnosis. Current deep learning for Metal Artifact Reduction (MAR) faces limitations: supervised methods suffer from spectral blurring due to "regression-to-the-mean", while unsupervised ones risk structural hallucinations. Denoising Diffusion Models (DDPMs) offer realism but rely on slow, stochastic iterative sampling, unsuitable for clinical use. To resolve this, we propose the Physically-Grounded Manifold Projection (PGMP) framework. First, our Anatomically-Adaptive Physics Simulation (AAPS) pipeline synthesizes high-fidelity training pairs via Monte Carlo spectral modeling and patient-specific digital twins, bridging the synthetic-to-real gap. Second, our DMP-Former adapts the Direct x-Prediction paradigm, reformulating restoration as a deterministic manifold projection to recover clean anatomy in a single forward pass, eliminating stochastic sampling. Finally, a Semantic-Structural Alignment (SSA) module anchors the solution using priors from medical foundation models (MedDINOv3), ensuring clinical plausibility. Experiments on synthetic and multi-center clinical datasets show PGMP outperforms state-of-the-art methods on unseen anatomy, setting new benchmarks in efficiency and diagnostic reliability. Code and data: https://github.com/ricoleehduu/PGMP.
Abstract:The efficacy of deep residual networks is fundamentally predicated on the identity shortcut connection. While this mechanism effectively mitigates the vanishing gradient problem, it imposes a strictly additive inductive bias on feature transformations, thereby limiting the network's capacity to model complex state transitions. In this paper, we introduce Deep Delta Learning (DDL), a novel architecture that generalizes the standard residual connection by modulating the identity shortcut with a learnable, data-dependent geometric transformation. This transformation, termed the Delta Operator, constitutes a rank-1 perturbation of the identity matrix, parameterized by a reflection direction vector $\mathbf{k}(\mathbf{X})$ and a gating scalar $β(\mathbf{X})$. We provide a spectral analysis of this operator, demonstrating that the gate $β(\mathbf{X})$ enables dynamic interpolation between identity mapping, orthogonal projection, and geometric reflection. Furthermore, we restructure the residual update as a synchronous rank-1 injection, where the gate acts as a dynamic step size governing both the erasure of old information and the writing of new features. This unification empowers the network to explicitly control the spectrum of its layer-wise transition operator, enabling the modeling of complex, non-monotonic dynamics while preserving the stable training characteristics of gated residual architectures.
Abstract:Metal artifacts in Dental CBCT severely obscure anatomical structures, hindering diagnosis. Current deep learning for Metal Artifact Reduction (MAR) faces limitations: supervised methods suffer from spectral blurring due to "regression-to-the-mean", while unsupervised ones risk structural hallucinations. Denoising Diffusion Models (DDPMs) offer realism but rely on slow, stochastic iterative sampling, unsuitable for clinical use. To resolve this, we propose the Physically-Grounded Manifold Projection (PGMP) framework. First, our Anatomically-Adaptive Physics Simulation (AAPS) pipeline synthesizes high-fidelity training pairs via Monte Carlo spectral modeling and patient-specific digital twins, bridging the synthetic-to-real gap. Second, our DMP-Former adapts the Direct x-Prediction paradigm, reformulating restoration as a deterministic manifold projection to recover clean anatomy in a single forward pass, eliminating stochastic sampling. Finally, a Semantic-Structural Alignment (SSA) module anchors the solution using priors from medical foundation models (MedDINOv3), ensuring clinical plausibility. Experiments on synthetic and multi-center clinical datasets show PGMP outperforms state-of-the-art methods on unseen anatomy, setting new benchmarks in efficiency and diagnostic reliability. Code and data: https://github.com/ricoleehduu/PGMP