Abstract:This work addresses the challenge of personalized question answering in long-term human-machine interactions: when conversational history spans weeks or months and exceeds the context window, existing personalization mechanisms struggle to continuously absorb and leverage users' incremental concepts, aliases, and preferences. Current personalized multimodal models are predominantly static-concepts are fixed at initialization and cannot evolve during interactions. We propose M2A, an agentic dual-layer hybrid memory system that maintains personalized multimodal information through online updates. The system employs two collaborative agents: ChatAgent manages user interactions and autonomously decides when to query or update memory, while MemoryManager breaks down memory requests from ChatAgent into detailed operations on the dual-layer memory bank, which couples a RawMessageStore (immutable conversation log) with a SemanticMemoryStore (high-level observations), providing memories at different granularities. In addition, we develop a reusable data synthesis pipeline that injects concept-grounded sessions from Yo'LLaVA and MC-LLaVA into LoCoMo long conversations while preserving temporal coherence. Experiments show that M2A significantly outperforms baselines, demonstrating that transforming personalization from one-shot configuration to a co-evolving memory mechanism provides a viable path for high-quality individualized responses in long-term multimodal interactions. The code is available at https://github.com/Little-Fridge/M2A.
Abstract:Multimodal understanding of advertising videos is essential for interpreting the intricate relationship between visual storytelling and abstract persuasion strategies. However, despite excelling at general search, existing agents often struggle to bridge the cognitive gap between pixel-level perception and high-level marketing logic. To address this challenge, we introduce AD-MIR, a framework designed to decode advertising intent via a two-stage architecture. First, in the Structure-Aware Memory Construction phase, the system converts raw video into a structured database by integrating semantic retrieval with exact keyword matching. This approach prioritizes fine-grained brand details (e.g., logos, on-screen text) while dynamically filtering out irrelevant background noise to isolate key protagonists. Second, the Structured Reasoning Agent mimics a marketing expert through an iterative inquiry loop, decomposing the narrative to deduce implicit persuasion tactics. Crucially, it employs an evidence-based self-correction mechanism that rigorously validates these insights against specific video frames, automatically backtracking when visual support is lacking. Evaluation on the AdsQA benchmark demonstrates that AD-MIR achieves state-of-the-art performance, surpassing the strongest general-purpose agent, DVD, by 1.8% in strict and 9.5% in relaxed accuracy. These results underscore that effective advertising understanding demands explicitly grounding abstract marketing strategies in pixel-level evidence. The code is available at https://github.com/Little-Fridge/AD-MIR.
Abstract:Reinforcement Learning (RL) has emerged as a pivotal mechanism for enhancing the complex reasoning capabilities of Multimodal Large Language Models (MLLMs). However, prevailing paradigms typically rely on solitary rollout strategies where the model works alone. This lack of intermediate oversight renders the reasoning process susceptible to error propagation, where early logical deviations cascade into irreversible failures, resulting in noisy optimization signals. In this paper, we propose the \textbf{Guided Verifier} framework to address these structural limitations. Moving beyond passive terminal rewards, we introduce a dynamic verifier that actively co-solves tasks alongside the policy. During the rollout phase, this verifier interacts with the policy model in real-time, detecting inconsistencies and providing directional signals to steer the model toward valid trajectories. To facilitate this, we develop a specialized data synthesis pipeline targeting multimodal hallucinations, constructing \textbf{CoRe} dataset of process-level negatives and \textbf{Co}rrect-guide \textbf{Re}asoning trajectories to train the guided verifier. Extensive experiments on MathVista, MathVerse and MMMU indicate that by allocating compute to collaborative inference and dynamic verification, an 8B-parameter model can achieve strong performance.
Abstract:Recent DiT-based text-to-image models increasingly adopt LLMs as text encoders, yet text conditioning remains largely static and often utilizes only a single LLM layer, despite pronounced semantic hierarchy across LLM layers and non-stationary denoising dynamics over both diffusion time and network depth. To better match the dynamic process of DiT generation and thereby enhance the diffusion model's generative capability, we introduce a unified normalized convex fusion framework equipped with lightweight gates to systematically organize multi-layer LLM hidden states via time-wise, depth-wise, and joint fusion. Experiments establish Depth-wise Semantic Routing as the superior conditioning strategy, consistently improving text-image alignment and compositional generation (e.g., +9.97 on the GenAI-Bench Counting task). Conversely, we find that purely time-wise fusion can paradoxically degrade visual generation fidelity. We attribute this to a train-inference trajectory mismatch: under classifier-free guidance, nominal timesteps fail to track the effective SNR, causing semantically mistimed feature injection during inference. Overall, our results position depth-wise routing as a strong and effective baseline and highlight the critical need for trajectory-aware signals to enable robust time-dependent conditioning.
Abstract:While vision-language-action (VLA) models for embodied agents integrate perception, reasoning, and control, they remain constrained by two critical weaknesses: first, during grasping tasks, the action tokens generated by the language model often exhibit subtle spatial deviations from the target object, resulting in grasp failures; second, they lack the ability to reliably recognize task completion, which leads to redundant actions and frequent timeout errors. To address these challenges and enhance robustness, we propose a lightweight, training-free framework, VLA-SCT. This framework operates as a self-correcting control loop, combining data-driven action refinement with conditional logic for termination. Consequently, compared to baseline approaches, our method achieves consistent improvements across all datasets in the LIBERO benchmark, significantly increasing the success rate of fine manipulation tasks and ensuring accurate task completion, thereby promoting the deployment of more reliable VLA agents in complex, unstructured environments.
Abstract:World models have emerged as a critical frontier in AI research, aiming to enhance large models by infusing them with physical dynamics and world knowledge. The core objective is to enable agents to understand, predict, and interact with complex environments. However, current research landscape remains fragmented, with approaches predominantly focused on injecting world knowledge into isolated tasks, such as visual prediction, 3D estimation, or symbol grounding, rather than establishing a unified definition or framework. While these task-specific integrations yield performance gains, they often lack the systematic coherence required for holistic world understanding. In this paper, we analyze the limitations of such fragmented approaches and propose a unified design specification for world models. We suggest that a robust world model should not be a loose collection of capabilities but a normative framework that integrally incorporates interaction, perception, symbolic reasoning, and spatial representation. This work aims to provide a structured perspective to guide future research toward more general, robust, and principled models of the world.
Abstract:Information-seeking agents have emerged as a powerful paradigm for solving knowledge-intensive tasks. Existing information-seeking agents are typically specialized for open web, documents, or local knowledge bases, which constrains scalability and cross-domain generalization. In this work, we investigate how to consolidate heterogeneous information-seeking agents into a single foundation agentic model. We study two complementary consolidation strategies: data-level consolidation, which jointly trains a unified model on a mixture of domain-specific datasets, and parameter-level consolidation, which merges independently trained agent models at the parameter level. Our analysis compares these approaches in terms of performance retention, cross-domain generalization, and interference across information-seeking behaviors. Our results show that data-level consolidation remains a strong and stable baseline, while parameter-level consolidation offers a promising, efficient alternative but suffers from interference and robustness challenges. We further identify key design factors for effective agent consolidation at the parameter level, including fine-grained merging granularity, awareness of task heterogeneity, and principled consensus strategy.
Abstract:The prefill stage of long-context Retrieval-Augmented Generation (RAG) is severely bottlenecked by computational overhead. To mitigate this, recent methods assemble pre-calculated KV caches of retrieved RAG documents (by a user query) and reprocess selected tokens to recover cross-attention between these pre-calculated KV caches. However, we identify a fundamental "crowding-out effect" in current token selection criteria: globally salient but user-query-irrelevant tokens saturate the limited recomputation budget, displacing the tokens truly essential for answering the user query and degrading inference accuracy. We propose ProphetKV, a user-query-driven KV Cache reuse method for RAG scenarios. ProphetKV dynamically prioritizes tokens based on their semantic relevance to the user query and employs a dual-stage recomputation pipeline to fuse layer-wise attention metrics into a high-utility set. By ensuring the recomputation budget is dedicated to bridging the informational gap between retrieved context and the user query, ProphetKV achieves high-fidelity attention recovery with minimal overhead. Our extensive evaluation results show that ProphetKV retains 96%-101% of full-prefill accuracy with only a 20% recomputation ratio, while achieving accuracy improvements of 8.8%-24.9% on RULER and 18.6%-50.9% on LongBench over the state-of-the-art approaches (e.g., CacheBlend, EPIC, and KVShare).
Abstract:In real-world data science and enterprise decision-making, critical information is often fragmented across directly queryable structured sources (e.g., SQL, CSV) and "zombie data" locked in unstructured visual documents (e.g., scanned reports, invoice images). Existing data analytics agents are predominantly limited to processing structured data, failing to activate and correlate this high-value visual information, thus creating a significant gap with industrial needs. To bridge this gap, we introduce DataCross, a novel benchmark and collaborative agent framework for unified, insight-driven analysis across heterogeneous data modalities. DataCrossBench comprises 200 end-to-end analysis tasks across finance, healthcare, and other domains. It is constructed via a human-in-the-loop reverse-synthesis pipeline, ensuring realistic complexity, cross-source dependency, and verifiable ground truth. The benchmark categorizes tasks into three difficulty tiers to evaluate agents' capabilities in visual table extraction, cross-modal alignment, and multi-step joint reasoning. We also propose the DataCrossAgent framework, inspired by the "divide-and-conquer" workflow of human analysts. It employs specialized sub-agents, each an expert on a specific data source, which are coordinated via a structured workflow of Intra-source Deep Exploration, Key Source Identification, and Contextual Cross-pollination. A novel reReAct mechanism enables robust code generation and debugging for factual verification. Experimental results show that DataCrossAgent achieves a 29.7% improvement in factuality over GPT-4o and exhibits superior robustness on high-difficulty tasks, effectively activating fragmented "zombie data" for insightful, cross-modal analysis.
Abstract:Recent advances in Vision Language Models (VLMs) have driven significant progress in visual reasoning. However, open-source VLMs still lag behind proprietary systems, largely due to the lack of high-quality reasoning data. Existing datasets offer limited coverage of challenging domains such as STEM diagrams and visual puzzles, and lack consistent, long-form Chain-of-Thought (CoT) annotations essential for eliciting strong reasoning capabilities. To bridge this gap, we introduce MMFineReason, a large-scale multimodal reasoning dataset comprising 1.8M samples and 5.1B solution tokens, featuring high-quality reasoning annotations distilled from Qwen3-VL-235B-A22B-Thinking. The dataset is established via a systematic three-stage pipeline: (1) large-scale data collection and standardization, (2) CoT rationale generation, and (3) comprehensive selection based on reasoning quality and difficulty awareness. The resulting dataset spans STEM problems, visual puzzles, games, and complex diagrams, with each sample annotated with visually grounded reasoning traces. We fine-tune Qwen3-VL-Instruct on MMFineReason to develop MMFineReason-2B/4B/8B versions. Our models establish new state-of-the-art results for their size class. Notably, MMFineReason-4B succesfully surpasses Qwen3-VL-8B-Thinking, and MMFineReason-8B even outperforms Qwen3-VL-30B-A3B-Thinking while approaching Qwen3-VL-32B-Thinking, demonstrating remarkable parameter efficiency. Crucially, we uncover a "less is more" phenomenon via our difficulty-aware filtering strategy: a subset of just 7\% (123K samples) achieves performance comparable to the full dataset. Notably, we reveal a synergistic effect where reasoning-oriented data composition simultaneously boosts general capabilities.