Sichuan University
Abstract:Offline preference optimization offers a simpler and more stable alternative to RLHF for aligning language models. However, their effectiveness is critically dependent on ranking accuracy, a metric where further gains are highly impactful. This limitation arises from a fundamental problem that we identify and formalize as the Overfitting-Underfitting Dilemma: current margin designs cause models to apply excessive, wasteful gradients to correctly ranked samples (overfitting) while providing insufficient corrective signals for misranked ones (underfitting). To resolve this dilemma, we propose Adaptive Margin-attached Preference Optimization (AMaPO), a simple yet principled algorithm. AMaPO employs an instance-wise adaptive margin, refined by Z-normalization and exponential scaling, which dynamically reallocates learning effort by amplifying gradients for misranked samples and suppressing them for correct ones. Extensive experiments on widely used benchmarks demonstrate that AMaPO not only achieves better ranking accuracy and superior downstream alignment performance, but targeted analysis also confirms that it successfully mitigates the core overfitting and underfitting issues.
Abstract:Multimodal large language models (MLLMs) have enabled a wide range of advanced vision-language applications, including fine-grained object recognition and contextual understanding. When querying specific regions or objects in an image, human users naturally use "visual prompts" (VPs), such as bounding boxes, to provide reference. However, no existing benchmark systematically evaluates the ability of MLLMs to interpret such VPs. This gap leaves it unclear whether current MLLMs can effectively recognize VPs, an intuitive prompting method for humans, and use them to solve problems. To address this limitation, we introduce VP-Bench, a benchmark for assessing MLLMs' capability in VP perception and utilization. VP-Bench employs a two-stage evaluation framework: Stage 1 examines models' ability to perceive VPs in natural scenes, using 30k visualized prompts spanning eight shapes and 355 attribute combinations. Stage 2 investigates the impact of VPs on downstream tasks, measuring their effectiveness in real-world problem-solving scenarios. Using VP-Bench, we evaluate 28 MLLMs, including proprietary systems (e.g., GPT-4o) and open-source models (e.g., InternVL3 and Qwen2.5-VL), and provide a comprehensive analysis of factors that affect VP understanding, such as variations in VP attributes, question arrangement, and model scale. VP-Bench establishes a new reference framework for studying how MLLMs comprehend and resolve grounded referring questions.
Abstract:E2EDev comprises (i) a fine-grained set of user requirements, (ii) {multiple BDD test scenarios with corresponding Python step implementations for each requirement}, and (iii) a fully automated testing pipeline built on the Behave framework. To ensure its quality while reducing the annotation effort, E2EDev leverages our proposed Human-in-the-Loop Multi-Agent Annotation Framework (HITL-MAA). {By evaluating various E2ESD frameworks and LLM backbones with E2EDev}, our analysis reveals a persistent struggle to effectively solve these tasks, underscoring the critical need for more effective and cost-efficient E2ESD solutions. Our codebase and benchmark are publicly available at https://github.com/SCUNLP/E2EDev.




Abstract:Despite the great potential of large language models(LLMs) in machine comprehension, it is still disturbing to fully count on them in real-world scenarios. This is probably because there is no rational explanation for whether the comprehension process of LLMs is aligned with that of experts. In this paper, we propose SCOP to carefully examine how LLMs perform during the comprehension process from a cognitive view. Specifically, it is equipped with a systematical definition of five requisite skills during the comprehension process, a strict framework to construct testing data for these skills, and a detailed analysis of advanced open-sourced and closed-sourced LLMs using the testing data. With SCOP, we find that it is still challenging for LLMs to perform an expert-level comprehension process. Even so, we notice that LLMs share some similarities with experts, e.g., performing better at comprehending local information than global information. Further analysis reveals that LLMs can be somewhat unreliable -- they might reach correct answers through flawed comprehension processes. Based on SCOP, we suggest that one direction for improving LLMs is to focus more on the comprehension process, ensuring all comprehension skills are thoroughly developed during training.




Abstract:While recent research increasingly emphasizes the value of human-LLM collaboration in competitive programming and proposes numerous empirical methods, a comprehensive understanding remains elusive due to the fragmented nature of existing studies and their use of diverse, application-specific human feedback. Thus, our work serves a three-fold purpose: First, we present the first taxonomy of human feedback consolidating the entire programming process, which promotes fine-grained evaluation. Second, we introduce ELABORATIONSET, a novel programming dataset specifically designed for human-LLM collaboration, meticulously annotated to enable large-scale simulated human feedback and facilitate costeffective real human interaction studies. Third, we introduce ELABORATION, a novel benchmark to facilitate a thorough assessment of human-LLM competitive programming. With ELABORATION, we pinpoint strengthes and weaknesses of existing methods, thereby setting the foundation for future improvement. Our code and dataset are available at https://github.com/SCUNLP/ELABORATION
Abstract:The massive user-generated content (UGC) available in Chinese social media is giving rise to the possibility of studying internet buzzwords. In this paper, we study if large language models (LLMs) can generate accurate definitions for these buzzwords based on UGC as examples. Our work serves a threefold contribution. First, we introduce CHEER, the first dataset of Chinese internet buzzwords, each annotated with a definition and relevant UGC. Second, we propose a novel method, called RESS, to effectively steer the comprehending process of LLMs to produce more accurate buzzword definitions, mirroring the skills of human language learning. Third, with CHEER, we benchmark the strengths and weaknesses of various off-the-shelf definition generation methods and our RESS. Our benchmark demonstrates the effectiveness of RESS while revealing crucial shared challenges: over-reliance on prior exposure, underdeveloped inferential abilities, and difficulty identifying high-quality UGC to facilitate comprehension. We believe our work lays the groundwork for future advancements in LLM-based definition generation. Our dataset and code are available at https://github.com/SCUNLP/Buzzword.




Abstract:Large language model (LLM) based agents have shown great potential in following human instructions and automatically completing various tasks. To complete a task, the agent needs to decompose it into easily executed steps by planning. Existing studies mainly conduct the planning by inferring what steps should be executed next starting from the agent's initial state. However, this forward reasoning paradigm doesn't work well for complex tasks. We propose to study this issue in Minecraft, a virtual environment that simulates complex tasks based on real-world scenarios. We believe that the failure of forward reasoning is caused by the big perception gap between the agent's initial state and task goal. To this end, we leverage backward reasoning and make the planning starting from the terminal state, which can directly achieve the task goal in one step. Specifically, we design a BAckward Reasoning based agent (BAR). It is equipped with a recursive goal decomposition module, a state consistency maintaining module and a stage memory module to make robust, consistent, and efficient planning starting from the terminal state. Experimental results demonstrate the superiority of BAR over existing methods and the effectiveness of proposed modules.




Abstract:Stigma has emerged as one of the major obstacles to effectively diagnosing depression, as it prevents users from open conversations about their struggles. This requires advanced questioning skills to carefully probe the presence of specific symptoms in an unobtrusive manner. While recent efforts have been made on depression-diagnosis-oriented dialogue systems, they largely ignore this problem, ultimately hampering their practical utility. To this end, we propose a novel and effective method, UPSD$^{4}$, developing a series of strategies to promote a sense of unobtrusiveness within the dialogue system and assessing depression disorder by probing symptoms. We experimentally show that UPSD$^{4}$ demonstrates a significant improvement over current baselines, including unobtrusiveness evaluation of dialogue content and diagnostic accuracy. We believe our work contributes to developing more accessible and user-friendly tools for addressing the widespread need for depression diagnosis.




Abstract:Large Language Models (LLMs) have recently achieved impressive results in complex reasoning tasks through Chain of Thought (CoT) prompting. However, most existing CoT methods rely on using the same prompts, whether manually designed or automatically generated, to handle the entire dataset. This one-size-fits-all approach may fail to meet the specific needs arising from the diversities within a single dataset. To solve this problem, we propose the Clustered Distance-Weighted Chain of Thought (CDW-CoT) method, which dynamically constructs prompts tailored to the characteristics of each data instance by integrating clustering and prompt optimization techniques. Our method employs clustering algorithms to categorize the dataset into distinct groups, from which a candidate pool of prompts is selected to reflect the inherent diversity within the dataset. For each cluster, CDW-CoT trains the optimal prompt probability distribution tailored to their specific characteristics. Finally, it dynamically constructs a unique prompt probability distribution for each test instance, based on its proximity to cluster centers, from which prompts are selected for reasoning. CDW-CoT consistently outperforms traditional CoT methods across six datasets, including commonsense, symbolic, and mathematical reasoning tasks. Specifically, when compared to manual CoT, CDW-CoT achieves an average accuracy improvement of 25.34% on LLaMA2 (13B) and 15.72% on LLaMA3 (8B).




Abstract:With the advancement of large language models (LLMs), intelligent models have evolved from mere tools to autonomous agents with their own goals and strategies for cooperating with humans. This evolution has birthed a novel paradigm in NLP, i.e., human-model cooperation, that has yielded remarkable progress in numerous NLP tasks in recent years. In this paper, we take the first step to present a thorough review of human-model cooperation, exploring its principles, formalizations, and open challenges. In particular, we introduce a new taxonomy that provides a unified perspective to summarize existing approaches. Also, we discuss potential frontier areas and their corresponding challenges. We regard our work as an entry point, paving the way for more breakthrough research in this regard.