M-PSI
Abstract:Recent advances in Knowledge Editing (KE), particularly Rank-One Model Editing (ROME), show superior efficiency over fine-tuning and in-context learning for updating single-hop facts in transformers. However, these methods face significant challenges when applied to multi-hop reasoning tasks requiring knowledge chaining. In this work, we study the effect of editing knowledge with ROME on different layer depths and identify three key failure modes. First, the "hopping-too-late" problem occurs as later layers lack access to necessary intermediate representations. Second, generalization ability deteriorates sharply when editing later layers. Third, the model overfits to edited knowledge, incorrectly prioritizing edited-hop answers regardless of context. To mitigate the issues of "hopping-too-late" and generalisation decay, we propose Redundant Editing, a simple yet effective strategy that enhances multi-hop reasoning. Our experiments demonstrate that this approach can improve accuracy on 2-hop questions by at least 15.5 percentage points, representing a 96% increase over the previous single-edit strategy, while trading off some specificity and language naturalness.
Abstract:We introduce RFC Bench, a benchmark for evaluating large language models on financial misinformation under realistic news. RFC Bench operates at the paragraph level and captures the contextual complexity of financial news where meaning emerges from dispersed cues. The benchmark defines two complementary tasks: reference free misinformation detection and comparison based diagnosis using paired original perturbed inputs. Experiments reveal a consistent pattern: performance is substantially stronger when comparative context is available, while reference free settings expose significant weaknesses, including unstable predictions and elevated invalid outputs. These results indicate that current models struggle to maintain coherent belief states without external grounding. By highlighting this gap, RFC Bench provides a structured testbed for studying reference free reasoning and advancing more reliable financial misinformation detection in real world settings.
Abstract:Moral sensitivity is fundamental to human moral competence, as it guides individuals in regulating everyday behavior. Although many approaches seek to align large language models (LLMs) with human moral values, how to enable them morally sensitive has been extremely challenging. In this paper, we take a step toward answering the question: how can we enhance moral sensitivity in LLMs? Specifically, we propose two pragmatic inference methods that faciliate LLMs to diagnose morally benign and hazardous input and correct moral errors, whereby enhancing LLMs' moral sensitivity. A central strength of our pragmatic inference methods is their unified perspective: instead of modeling moral discourses across semantically diverse and complex surface forms, they offer a principled perspective for designing pragmatic inference procedures grounded in their inferential loads. Empirical evidence demonstrates that our pragmatic methods can enhance moral sensitivity in LLMs and achieves strong performance on representative morality-relevant benchmarks.
Abstract:Recent advancements adopt online reinforcement learning (RL) from LLMs to text-to-image rectified flow diffusion models for reward alignment. The use of group-level rewards successfully aligns the model with the targeted reward. However, it faces challenges including low efficiency, dependency on stochastic samplers, and reward hacking. The problem is that rectified flow models are fundamentally different from LLMs: 1) For efficiency, online image sampling takes much more time and dominates the time of training. 2) For stochasticity, rectified flow is deterministic once the initial noise is fixed. Aiming at these problems and inspired by the effects of group-level rewards from LLMs, we design Group-level Direct Reward Optimization (GDRO). GDRO is a new post-training paradigm for group-level reward alignment that combines the characteristics of rectified flow models. Through rigorous theoretical analysis, we point out that GDRO supports full offline training that saves the large time cost for image rollout sampling. Also, it is diffusion-sampler-independent, which eliminates the need for the ODE-to-SDE approximation to obtain stochasticity. We also empirically study the reward hacking trap that may mislead the evaluation, and involve this factor in the evaluation using a corrected score that not only considers the original evaluation reward but also the trend of reward hacking. Extensive experiments demonstrate that GDRO effectively and efficiently improves the reward score of the diffusion model through group-wise offline optimization across the OCR and GenEval tasks, while demonstrating strong stability and robustness in mitigating reward hacking.
Abstract:Multimodal large language models (MLLMs) show promising performance on medical visual question answering (VQA) and report generation, but these generation and explanation abilities do not reliably transfer to disease-specific classification. We evaluated MLLM architectures on knee osteoarthritis (OA) radiograph classification, which remains underrepresented in existing medical MLLM benchmarks, even though knee OA affects an estimated 300 to 400 million people worldwide. Through systematic ablation studies manipulating the vision encoder, the connector, and the large language model (LLM) across diverse training strategies, we measured each component's contribution to diagnostic accuracy. In our classification task, a trained vision encoder alone could outperform full MLLM pipelines in classification accuracy and fine-tuning the LLM provided no meaningful improvement over prompt-based guidance. And LoRA fine-tuning on a small, class-balanced dataset (500 images) gave better results than training on a much larger but class-imbalanced set (5,778 images), indicating that data balance and quality can matter more than raw scale for this task. These findings suggest that for domain-specific medical classification, LLMs are more effective as interpreters and report generators rather than as primary classifiers. Therefore, the MLLM architecture appears less suitable for medical image diagnostic classification tasks that demand high certainty. We recommend prioritizing vision encoder optimization and careful dataset curation when developing clinically applicable systems.
Abstract:As LLMs shift toward autonomous agents, Deep Research has emerged as a pivotal metric. However, existing academic benchmarks like BrowseComp often fail to meet real-world demands for open-ended research, which requires robust skills in intent recognition, long-horizon decision-making, and cross-source verification. To address this, we introduce Step-DeepResearch, a cost-effective, end-to-end agent. We propose a Data Synthesis Strategy Based on Atomic Capabilities to reinforce planning and report writing, combined with a progressive training path from agentic mid-training to SFT and RL. Enhanced by a Checklist-style Judger, this approach significantly improves robustness. Furthermore, to bridge the evaluation gap in the Chinese domain, we establish ADR-Bench for realistic deep research scenarios. Experimental results show that Step-DeepResearch (32B) scores 61.4% on Scale AI Research Rubrics. On ADR-Bench, it significantly outperforms comparable models and rivals SOTA closed-source models like OpenAI and Gemini DeepResearch. These findings prove that refined training enables medium-sized models to achieve expert-level capabilities at industry-leading cost-efficiency.




Abstract:This paper examines the exploration-exploitation trade-off in reinforcement learning with verifiable rewards (RLVR), a framework for improving the reasoning of Large Language Models (LLMs). Recent studies suggest that RLVR can elicit strong mathematical reasoning in LLMs through two seemingly paradoxical mechanisms: spurious rewards, which suppress exploitation by rewarding outcomes unrelated to the ground truth, and entropy minimization, which suppresses exploration by pushing the model toward more confident and deterministic outputs, highlighting a puzzling dynamic: both discouraging exploitation and discouraging exploration improve reasoning performance, yet the underlying principles that reconcile these effects remain poorly understood. We focus on two fundamental questions: (i) how policy entropy relates to performance, and (ii) whether spurious rewards yield gains, potentially through the interplay of clipping bias and model contamination. Our results show that clipping bias under spurious rewards reduces policy entropy, leading to more confident and deterministic outputs, while entropy minimization alone is insufficient for improvement. We further propose a reward-misalignment model explaining why spurious rewards can enhance performance beyond contaminated settings. Our findings clarify the mechanisms behind spurious-reward benefits and provide principles for more effective RLVR training.
Abstract:Long Video Question-Answering (LVQA) presents a significant challenge for Multi-modal Large Language Models (MLLMs) due to immense context and overloaded information, which could also lead to prohibitive memory consumption. While existing methods attempt to address these issues by reducing visual tokens or extending model's context length, they may miss useful information or take considerable computation. In fact, when answering given questions, only a small amount of crucial information is required. Therefore, we propose an efficient question-aware memory mechanism, enabling MLLMs to recurrently seek these critical clues. Our approach, named VideoDetective, simplifies this task by iteratively processing video sub-segments. For each sub-segment, a question-aware compression strategy is employed by introducing a few special memory tokens to achieve purposefully compression. This allows models to effectively seek critical clues while reducing visual tokens. Then, due to history context could have a significant impact, we recurrently aggregate and store these memory tokens to update history context, which would be reused for subsequent sub-segments. Furthermore, to more effectively measure model's long video understanding ability, we introduce GLVC (Grounding Long Video Clues), a long video question-answering dataset, which features grounding critical and concrete clues scattered throughout entire videos. Experimental results demonstrate our method enables MLLMs with limited context length of 32K to efficiently process 100K tokens (3600 frames, an hour-long video sampled at 1fps), requiring only 2 minutes and 37GB GPU memory usage. Evaluation results across multiple long video benchmarks illustrate our method can more effectively seek critical clues from massive information.
Abstract:This paper analyzes the performance of spectro-temporal unitary transforms for coherent optical modulation. Unlike conventional IQ modulation, such transforms are based on a cascade of phase modulators and dispersive elements, so are theoretically lossless and not limited by the bandwidth of the constituent modulators. We analyse the performance limits and design trade-offs of this scheme: estimating how the number of stages, amount of dispersion, modulator bandwidth, symbol block length and electrical signal power impacts the achievable signal-to-distortion ratio (SDR). Importantly, we show that high (>30 dB) SDRs suitable for modern >200 GBd class coherent optical communications are achievable with a low (<6) number of stages and reasonable parameters for driver power, modulator bandwidth and on-chip dispersion. Finally we address the SDR penalties associated with potential phase, amplitude, or dispersion errors, and limited DAC resolution.
Abstract:Recent advances in Text-to-Image (T2I) generative models, such as Imagen, Stable Diffusion, and FLUX, have led to remarkable improvements in visual quality. However, their performance is fundamentally limited by the quality of training data. Web-crawled and synthetic image datasets often contain low-quality or redundant samples, which lead to degraded visual fidelity, unstable training, and inefficient computation. Hence, effective data selection is crucial for improving data efficiency. Existing approaches rely on costly manual curation or heuristic scoring based on single-dimensional features in Text-to-Image data filtering. Although meta-learning based method has been explored in LLM, there is no adaptation for image modalities. To this end, we propose **Alchemist**, a meta-gradient-based framework to select a suitable subset from large-scale text-image data pairs. Our approach automatically learns to assess the influence of each sample by iteratively optimizing the model from a data-centric perspective. Alchemist consists of two key stages: data rating and data pruning. We train a lightweight rater to estimate each sample's influence based on gradient information, enhanced with multi-granularity perception. We then use the Shift-Gsampling strategy to select informative subsets for efficient model training. Alchemist is the first automatic, scalable, meta-gradient-based data selection framework for Text-to-Image model training. Experiments on both synthetic and web-crawled datasets demonstrate that Alchemist consistently improves visual quality and downstream performance. Training on an Alchemist-selected 50% of the data can outperform training on the full dataset.