Abstract:Image retrieval is a critical step for alleviating the quadratic complexity of image matching in unconstrained Structure-from-Motion (SfM). However, in this context, image retrieval typically focuses more on the image pairs of geometric matchability than on those of semantic similarity, a nuance that most existing deep learning-based methods guided by batched binaries (overlapping vs. non-overlapping pairs) fail to capture. In this paper, we introduce SupScene, a novel solution that learns global descriptors tailored for finding overlapping image pairs of similar geometric nature for SfM. First, to better underline co-visible regions, we employ a subgraph-based training strategy that moves beyond equally important isolated pairs, leveraging ground-truth geometric overlapping relationships with various weights to provide fine-grained supervision via a soft supervised contrastive loss. Second, we introduce DiVLAD, a DINO-inspired VLAD aggregator that leverages the inherent multi-head attention maps from the last block of ViT. And then, a learnable gating mechanism is designed to adaptively utilize these semantically salient cues with visual features, enabling a more discriminative global descriptor. Extensive experiments on the GL3D dataset demonstrate that our method achieves state-of-the-art performance, significantly outperforming NetVLAD while introducing a negligible number of additional trainable parameters. Furthermore, we show that the proposed training strategy brings consistent gains across different aggregation techniques. Code and models are available at https://anonymous.4open.science/r/SupScene-5B73.
Abstract:Recent Video Large Language Models (Video-LLMs) have shown strong multimodal reasoning capabilities, yet remain challenged by video understanding tasks that require consistent temporal ordering and causal coherence. Many parameter-efficient Video-LLMs rely on unconstrained bidirectional projectors to model inter-frame interactions, which can blur temporal ordering by allowing later frames to influence earlier representations, without explicit architectural mechanisms to respect the directional nature of video reasoning. To address this limitation, we propose V-CORE, a parameter-efficient framework that introduces explicit temporal ordering constraints for video understanding. V-CORE consists of two key components: (1) Learnable Spatial Aggregation (LSA), which adaptively selects salient spatial tokens to reduce redundancy, and (2) a Causality-Aware Temporal Projector (CATP), which enforces structured unidirectional information flow via block-causal attention and a terminal dynamic summary token acting as a causal sink. This design preserves intra-frame spatial interactions while ensuring that temporal information is aggregated in a strictly ordered manner. With 4-bit QLoRA and a frozen LLM backbone, V-CORE can be trained efficiently on a single consumer GPU. Experiments show that V-CORE achieves strong performance on the challenging NExT-QA benchmark, reaching 61.2% accuracy, and remains competitive across MSVD-QA, MSRVTT-QA, and TGIF-QA, with gains concentrated in temporal and causal reasoning subcategories (+3.5% and +5.2% respectively), directly validating the importance of explicit temporal ordering constraints.
Abstract:We present HY-Motion 1.0, a series of state-of-the-art, large-scale, motion generation models capable of generating 3D human motions from textual descriptions. HY-Motion 1.0 represents the first successful attempt to scale up Diffusion Transformer (DiT)-based flow matching models to the billion-parameter scale within the motion generation domain, delivering instruction-following capabilities that significantly outperform current open-source benchmarks. Uniquely, we introduce a comprehensive, full-stage training paradigm -- including large-scale pretraining on over 3,000 hours of motion data, high-quality fine-tuning on 400 hours of curated data, and reinforcement learning from both human feedback and reward models -- to ensure precise alignment with the text instruction and high motion quality. This framework is supported by our meticulous data processing pipeline, which performs rigorous motion cleaning and captioning. Consequently, our model achieves the most extensive coverage, spanning over 200 motion categories across 6 major classes. We release HY-Motion 1.0 to the open-source community to foster future research and accelerate the transition of 3D human motion generation models towards commercial maturity.




Abstract:A well-engineered prompt can increase the performance of large language models; automatic prompt optimization techniques aim to increase performance without requiring human effort to tune the prompts. One leading class of prompt optimization techniques introduces the analogy of textual gradients. We investigate the behavior of these textual gradient methods through a series of experiments and case studies. While such methods often result in a performance improvement, our experiments suggest that the gradient analogy does not accurately explain their behavior. Our insights may inform the selection of prompt optimization strategies, and development of new approaches.
Abstract:Detection Transformer (DETR) offers an end-to-end solution for object detection by eliminating hand-crafted components like non-maximum suppression. However, DETR suffers from inefficient query competition where multiple queries converge to similar positions, leading to redundant computations. We present Route-DETR, which addresses these issues through adaptive pairwise routing in decoder self-attention layers. Our key insight is distinguishing between competing queries (targeting the same object) versus complementary queries (targeting different objects) using inter-query similarity, confidence scores, and geometry. We introduce dual routing mechanisms: suppressor routes that modulate attention between competing queries to reduce duplication, and delegator routes that encourage exploration of different regions. These are implemented via learnable low-rank attention biases enabling asymmetric query interactions. A dual-branch training strategy incorporates routing biases only during training while preserving standard attention for inference, ensuring no additional computational cost. Experiments on COCO and Cityscapes demonstrate consistent improvements across multiple DETR baselines, achieving +1.7% mAP gain over DINO on ResNet-50 and reaching 57.6% mAP on Swin-L, surpassing prior state-of-the-art models.
Abstract:Bayesian Optimization (BO) is a key methodology for accelerating molecular discovery by estimating the mapping from molecules to their properties while seeking the optimal candidate. Typically, BO iteratively updates a probabilistic surrogate model of this mapping and optimizes acquisition functions derived from the model to guide molecule selection. However, its performance is limited in low-data regimes with insufficient prior knowledge and vast candidate spaces. Large language models (LLMs) and chemistry foundation models offer rich priors to enhance BO, but high-dimensional features, costly in-context learning, and the computational burden of deep Bayesian surrogates hinder their full utilization. To address these challenges, we propose a likelihood-free BO method that bypasses explicit surrogate modeling and directly leverages priors from general LLMs and chemistry-specific foundation models to inform acquisition functions. Our method also learns a tree-structured partition of the molecular search space with local acquisition functions, enabling efficient candidate selection via Monte Carlo Tree Search. By further incorporating coarse-grained LLM-based clustering, it substantially improves scalability to large candidate sets by restricting acquisition function evaluations to clusters with statistically higher property values. We show through extensive experiments and ablations that the proposed method substantially improves scalability, robustness, and sample efficiency in LLM-guided BO for molecular discovery.
Abstract:Understanding disease progression is a central clinical challenge with direct implications for early diagnosis and personalized treatment. While recent generative approaches have attempted to model progression, key mismatches remain: disease dynamics are inherently continuous and monotonic, yet latent representations are often scattered, lacking semantic structure, and diffusion-based models disrupt continuity with random denoising process. In this work, we propose to treat the disease dynamic as a velocity field and leverage Flow Matching (FM) to align the temporal evolution of patient data. Unlike prior methods, it captures the intrinsic dynamic of disease, making the progression more interpretable. However, a key challenge remains: in latent space, Auto-Encoders (AEs) do not guarantee alignment across patients or correlation with clinical-severity indicators (e.g., age and disease conditions). To address this, we propose to learn patient-specific latent alignment, which enforces patient trajectories to lie along a specific axis, with magnitude increasing monotonically with disease severity. This leads to a consistent and semantically meaningful latent space. Together, we present $Δ$-LFM, a framework for modeling patient-specific latent progression with flow matching. Across three longitudinal MRI benchmarks, $Δ$-LFM demonstrates strong empirical performance and, more importantly, offers a new framework for interpreting and visualizing disease dynamics.
Abstract:Cross-view geo-localization (CVGL) matches query images ($\textit{e.g.}$, drone) to geographically corresponding opposite-view imagery ($\textit{e.g.}$, satellite). While supervised methods achieve strong performance, their reliance on extensive pairwise annotations limits scalability. Unsupervised alternatives avoid annotation costs but suffer from noisy pseudo-labels due to intrinsic cross-view domain gaps. To address these limitations, we propose $\textit{UniABG}$, a novel dual-stage unsupervised cross-view geo-localization framework integrating adversarial view bridging with graph-based correspondence calibration. Our approach first employs View-Aware Adversarial Bridging (VAAB) to model view-invariant features and enhance pseudo-label robustness. Subsequently, Heterogeneous Graph Filtering Calibration (HGFC) refines cross-view associations by constructing dual inter-view structure graphs, achieving reliable view correspondence. Extensive experiments demonstrate state-of-the-art unsupervised performance, showing that UniABG improves Satellite $\rightarrow$ Drone AP by +10.63\% on University-1652 and +16.73\% on SUES-200, even surpassing supervised baselines. The source code is available at https://github.com/chenqi142/UniABG
Abstract:Medical decision-support and advising systems are critical for emergency physicians to quickly and accurately assess patients' conditions and make diagnosis. Artificial Intelligence (AI) has emerged as a transformative force in healthcare in recent years and Large Language Models (LLMs) have been employed in various fields of medical decision-support systems. We studied responses of a group of different LLMs to real cases in emergency medicine. The results of our study on five most renown LLMs showed significant differences in capabilities of Large Language Models for diagnostics acute diseases in medical emergencies with accuracy ranging between 58% and 65%. This accuracy significantly exceeds the reported accuracy of human doctors. We built a super-learner MEDAS (Medical Emergency Diagnostic Advising System) of five major LLMs - Gemini, Llama, Grok, GPT, and Claude). The super-learner produces higher diagnostic accuracy, 70%, even with a quite basic meta-learner. However, at least one of the integrated LLMs in the same super-learner produces 85% correct diagnoses. The super-learner integrates a cluster of LLMs using a meta-learner capable of learning different capabilities of each LLM to leverage diagnostic accuracy of the model by collective capabilities of all LLMs in the cluster. The results of our study showed that aggregated diagnostic accuracy provided by a meta-learning approach exceeds that of any individual LLM, suggesting that the super-learner can take advantage of the combined knowledge of the medical datasets used to train the group of LLMs.
Abstract:Recent advances in 3D Gaussian Splatting (3DGS) have achieved state-of-the-art results for novel view synthesis. However, efficiently capturing high-fidelity reconstructions of specific objects within complex scenes remains a significant challenge. A key limitation of existing active reconstruction methods is their reliance on scene-level uncertainty metrics, which are often biased by irrelevant background clutter and lead to inefficient view selection for object-centric tasks. We present OUGS, a novel framework that addresses this challenge with a more principled, physically-grounded uncertainty formulation for 3DGS. Our core innovation is to derive uncertainty directly from the explicit physical parameters of the 3D Gaussian primitives (e.g., position, scale, rotation). By propagating the covariance of these parameters through the rendering Jacobian, we establish a highly interpretable uncertainty model. This foundation allows us to then seamlessly integrate semantic segmentation masks to produce a targeted, object-aware uncertainty score that effectively disentangles the object from its environment. This allows for a more effective active view selection strategy that prioritizes views critical to improving object fidelity. Experimental evaluations on public datasets demonstrate that our approach significantly improves the efficiency of the 3DGS reconstruction process and achieves higher quality for targeted objects compared to existing state-of-the-art methods, while also serving as a robust uncertainty estimator for the global scene.