Member, IEEE
Abstract:Ensuring realistic traffic dynamics is a prerequisite for simulation platforms to evaluate the reliability of self-driving systems before deployment in the real world. Because most road users are human drivers, reproducing their diverse behaviors within simulators is vital. Existing solutions, however, typically rely on either handcrafted heuristics or narrow data-driven models, which capture only fragments of real driving behaviors and offer limited driving style diversity and interpretability. To address this gap, we introduce HDSim, an HD traffic generation framework that combines cognitive theory with large language model (LLM) assistance to produce scalable and realistic traffic scenarios within simulation platforms. The framework advances the state of the art in two ways: (i) it introduces a hierarchical driver model that represents diverse driving style traits, and (ii) it develops a Perception-Mediated Behavior Influence strategy, where LLMs guide perception to indirectly shape driver actions. Experiments reveal that embedding HDSim into simulation improves detection of safety-critical failures in self-driving systems by up to 68% and yields realism-consistent accident interpretability.
Abstract:We propose a novel probabilistic framework, termed LVM-GP, for uncertainty quantification in solving forward and inverse partial differential equations (PDEs) with noisy data. The core idea is to construct a stochastic mapping from the input to a high-dimensional latent representation, enabling uncertainty-aware prediction of the solution. Specifically, the architecture consists of a confidence-aware encoder and a probabilistic decoder. The encoder implements a high-dimensional latent variable model based on a Gaussian process (LVM-GP), where the latent representation is constructed by interpolating between a learnable deterministic feature and a Gaussian process prior, with the interpolation strength adaptively controlled by a confidence function learned from data. The decoder defines a conditional Gaussian distribution over the solution field, where the mean is predicted by a neural operator applied to the latent representation, allowing the model to learn flexible function-to-function mapping. Moreover, physical laws are enforced as soft constraints in the loss function to ensure consistency with the underlying PDE structure. Compared to existing approaches such as Bayesian physics-informed neural networks (B-PINNs) and deep ensembles, the proposed framework can efficiently capture functional dependencies via merging a latent Gaussian process and neural operator, resulting in competitive predictive accuracy and robust uncertainty quantification. Numerical experiments demonstrate the effectiveness and reliability of the method.
Abstract:Distributed optical fiber vibration sensing (DVS) systems offer a promising solution for large-scale monitoring and intrusion event recognition. However, their practical deployment remains hindered by two major challenges: degradation of recognition accuracy in dynamic conditions, and the computational bottleneck of real-time processing for mass sensing data. This paper presents a new solution to these challenges, through a FPGA-accelerated extreme lightweight model along with a newly proposed knowledge distillation framework. The proposed three-layer depthwise separable convolution network contains only 4141 parameters, which is the most compact architecture in this field to date, and achieves a maximum processing speed of 0.019 ms for each sample covering a 12.5 m fiber length over 0.256 s. This performance corresponds to real-time processing capabilities for sensing fibers extending up to 168.68 km. To improve generalizability under changing environments, the proposed cross-domain distillation framework guided by physical priors is used here to embed frequency-domain insights into the time-domain model. This allows for time-frequency representation learning without increasing complexity and boosts recognition accuracy from 51.93% to 95.72% under unseen environmental conditions. The proposed methodology provides key advancements including a framework combining interpretable signal processing technique with deep learning and a reference architecture for real-time processing and edge-computing in DVS systems, and more general distributed optical fiber sensing (DOFS) area. It mitigates the trade-off between sensing range and real-time capability, bridging the gap between theoretical capabilities and practical deployment requirements. Furthermore, this work reveals a new direction for building more efficient, robust and explainable artificial intelligence systems for DOFS technologies.
Abstract:Scientific discoveries increasingly rely on complex multimodal reasoning based on information-intensive scientific data and domain-specific expertise. Empowered by expert-level scientific benchmarks, scientific Multimodal Large Language Models (MLLMs) hold the potential to significantly enhance this discovery process in realistic workflows. However, current scientific benchmarks mostly focus on evaluating the knowledge understanding capabilities of MLLMs, leading to an inadequate assessment of their perception and reasoning abilities. To address this gap, we present the Scientists' First Exam (SFE) benchmark, designed to evaluate the scientific cognitive capacities of MLLMs through three interconnected levels: scientific signal perception, scientific attribute understanding, scientific comparative reasoning. Specifically, SFE comprises 830 expert-verified VQA pairs across three question types, spanning 66 multimodal tasks across five high-value disciplines. Extensive experiments reveal that current state-of-the-art GPT-o3 and InternVL-3 achieve only 34.08% and 26.52% on SFE, highlighting significant room for MLLMs to improve in scientific realms. We hope the insights obtained in SFE will facilitate further developments in AI-enhanced scientific discoveries.
Abstract:Object detection is a cornerstone of environmental perception in advanced driver assistance systems(ADAS). However, most existing methods rely on RGB cameras, which suffer from significant performance degradation under low-light conditions due to poor image quality. To address this challenge, we proposes WTEFNet, a real-time object detection framework specifically designed for low-light scenarios, with strong adaptability to mainstream detectors. WTEFNet comprises three core modules: a Low-Light Enhancement (LLE) module, a Wavelet-based Feature Extraction (WFE) module, and an Adaptive Fusion Detection (AFFD) module. The LLE enhances dark regions while suppressing overexposed areas; the WFE applies multi-level discrete wavelet transforms to isolate high- and low-frequency components, enabling effective denoising and structural feature retention; the AFFD fuses semantic and illumination features for robust detection. To support training and evaluation, we introduce GSN, a manually annotated dataset covering both clear and rainy night-time scenes. Extensive experiments on BDD100K, SHIFT, nuScenes, and GSN demonstrate that WTEFNet achieves state-of-the-art accuracy under low-light conditions. Furthermore, deployment on a embedded platform (NVIDIA Jetson AGX Orin) confirms the framework's suitability for real-time ADAS applications.
Abstract:We design improved approximation algorithms for NP-hard graph problems by incorporating predictions (e.g., learned from past data). Our prediction model builds upon and extends the $\varepsilon$-prediction framework by Cohen-Addad, d'Orsi, Gupta, Lee, and Panigrahi (NeurIPS 2024). We consider an edge-based version of this model, where each edge provides two bits of information, corresponding to predictions about whether each of its endpoints belong to an optimal solution. Even with weak predictions where each bit is only $\varepsilon$-correlated with the true solution, this information allows us to break approximation barriers in the standard setting. We develop algorithms with improved approximation ratios for MaxCut, Vertex Cover, Set Cover, and Maximum Independent Set problems (among others). Across these problems, our algorithms share a unifying theme, where we separately satisfy constraints related to high degree vertices (using predictions) and low-degree vertices (without using predictions) and carefully combine the answers.
Abstract:Traditional search engines struggle to synthesize fragmented information for complex queries, while generative AI search engines face challenges in relevance, comprehensiveness, and presentation. To address these limitations, we introduce Xinyu AI Search, a novel system that incorporates a query-decomposition graph to dynamically break down complex queries into sub-queries, enabling stepwise retrieval and generation. Our retrieval pipeline enhances diversity through multi-source aggregation and query expansion, while filtering and re-ranking strategies optimize passage relevance. Additionally, Xinyu AI Search introduces a novel approach for fine-grained, precise built-in citation and innovates in result presentation by integrating timeline visualization and textual-visual choreography. Evaluated on recent real-world queries, Xinyu AI Search outperforms eight existing technologies in human assessments, excelling in relevance, comprehensiveness, and insightfulness. Ablation studies validate the necessity of its key sub-modules. Our work presents the first comprehensive framework for generative AI search engines, bridging retrieval, generation, and user-centric presentation.
Abstract:Access control in the Internet of Things (IoT) is becoming increasingly complex, as policies must account for dynamic and contextual factors such as time, location, user behavior, and environmental conditions. However, existing platforms either offer only coarse-grained controls or rely on rigid rule matching, making them ill-suited for semantically rich or ambiguous access scenarios. Moreover, the policy authoring process remains fragmented: domain experts describe requirements in natural language, but developers must manually translate them into code, introducing semantic gaps and potential misconfiguration. In this work, we present LACE, the Language-based Access Control Engine, a hybrid framework that leverages large language models (LLMs) to bridge the gap between human intent and machine-enforceable logic. LACE combines prompt-guided policy generation, retrieval-augmented reasoning, and formal validation to support expressive, interpretable, and verifiable access control. It enables users to specify policies in natural language, automatically translates them into structured rules, validates semantic correctness, and makes access decisions using a hybrid LLM-rule-based engine. We evaluate LACE in smart home environments through extensive experiments. LACE achieves 100% correctness in verified policy generation and up to 88% decision accuracy with 0.79 F1-score using DeepSeek-V3, outperforming baselines such as GPT-3.5 and Gemini. The system also demonstrates strong scalability under increasing policy volume and request concurrency. Our results highlight LACE's potential to enable secure, flexible, and user-friendly access control across real-world IoT platforms.
Abstract:Accurate Subseasonal-to-Seasonal (S2S) ocean simulation is critically important for marine research, yet remains challenging due to its substantial thermal inertia and extended time delay. Machine learning (ML)-based models have demonstrated significant advancements in simulation accuracy and computational efficiency compared to traditional numerical methods. Nevertheless, a significant limitation of current ML models for S2S ocean simulation is their inadequate incorporation of physical consistency and the slow-changing properties of the ocean system. In this work, we propose a neural ocean model (NeuralOM) for S2S ocean simulation with a multi-scale interactive graph neural network to emulate diverse physical phenomena associated with ocean systems effectively. Specifically, we propose a multi-stage framework tailored to model the ocean's slowly changing nature. Additionally, we introduce a multi-scale interactive messaging module to capture complex dynamical behaviors, such as gradient changes and multiplicative coupling relationships inherent in ocean dynamics. Extensive experimental evaluations confirm that our proposed NeuralOM outperforms state-of-the-art models in S2S and extreme event simulation. The codes are available at https://github.com/YuanGao-YG/NeuralOM.
Abstract:Reliable long-term forecast of Earth system dynamics is heavily hampered by instabilities in current AI models during extended autoregressive simulations. These failures often originate from inherent spectral bias, leading to inadequate representation of critical high-frequency, small-scale processes and subsequent uncontrolled error amplification. We present Triton, an AI framework designed to address this fundamental challenge. Inspired by increasing grids to explicitly resolve small scales in numerical models, Triton employs a hierarchical architecture processing information across multiple resolutions to mitigate spectral bias and explicitly model cross-scale dynamics. We demonstrate Triton's superior performance on challenging forecast tasks, achieving stable year-long global temperature forecasts, skillful Kuroshio eddy predictions till 120 days, and high-fidelity turbulence simulations preserving fine-scale structures all without external forcing, with significantly surpassing baseline AI models in long-term stability and accuracy. By effectively suppressing high-frequency error accumulation, Triton offers a promising pathway towards trustworthy AI-driven simulation for climate and earth system science.