Member, IEEE
Abstract:Simulated environments play an essential role in embodied AI, functionally analogous to test cases in software engineering. However, existing environment generation methods often emphasize visual realism (e.g., object diversity and layout coherence), overlooking a crucial aspect: logical diversity from the testing perspective. This limits the comprehensive evaluation of agent adaptability and planning robustness in distinct simulated environments. To bridge this gap, we propose LogicEnvGen, a novel method driven by Large Language Models (LLMs) that adopts a top-down paradigm to generate logically diverse simulated environments as test cases for agents. Given an agent task, LogicEnvGen first analyzes its execution logic to construct decision-tree-structured behavior plans and then synthesizes a set of logical trajectories. Subsequently, it adopts a heuristic algorithm to refine the trajectory set, reducing redundant simulation. For each logical trajectory, which represents a potential task situation, LogicEnvGen correspondingly instantiates a concrete environment. Notably, it employs constraint solving for physical plausibility. Furthermore, we introduce LogicEnvEval, a novel benchmark comprising four quantitative metrics for environment evaluation. Experimental results verify the lack of logical diversity in baselines and demonstrate that LogicEnvGen achieves 1.04-2.61x greater diversity, significantly improving the performance in revealing agent faults by 4.00%-68.00%.
Abstract:Probabilistic time series forecasting is crucial for quantifying future uncertainty, with significant applications in fields such as energy and finance. However, existing methods often rely on computationally expensive sampling or restrictive parametric assumptions to characterize future distributions, which limits predictive performance and introduces distributional mismatch. To address these challenges, this paper presents TimeGMM, a novel probabilistic forecasting framework based on Gaussian Mixture Models (GMM) that captures complex future distributions in a single forward pass. A key component is GMM-adapted Reversible Instance Normalization (GRIN), a novel module designed to dynamically adapt to temporal-probabilistic distribution shifts. The framework integrates a dedicated Temporal Encoder (TE-Module) with a Conditional Temporal-Probabilistic Decoder (CTPD-Module) to jointly capture temporal dependencies and mixture distribution parameters. Extensive experiments demonstrate that TimeGMM consistently outperforms state-of-the-art methods, achieving maximum improvements of 22.48\% in CRPS and 21.23\% in NMAE.
Abstract:This paper investigates the three-dimensional (3D) deployment of uncrewed aerial vehicles (UAVs) as aerial base stations in heterogeneous communication networks under constraints imposed by diverse ground obstacles. Given the diverse data demands of user equipments (UEs), a user satisfaction model is developed to provide personalized services. In particular, when a UE is located within a ground obstacle, the UAV must approach the obstacle boundary to ensure reliable service quality. Considering constraints such as UAV failures due to battery depletion, heterogeneous UEs, and obstacles, we aim to maximize overall user satisfaction by jointly optimizing the 3D trajectories of UAVs, transmit beamforming vectors, and binary association indicators between UAVs and UEs. To address the complexity and dynamics of the problem, a block coordinate descent method is adopted to decompose it into two subproblems. The beamforming subproblem is efficiently addressed via a bisection-based water-filling algorithm. For the trajectory and association subproblem, we design a deep reinforcement learning algorithm based on proximal policy optimization to learn an adaptive control policy. Simulation results demonstrate that the proposed scheme outperforms baseline schemes in terms of convergence speed and overall system performance. Moreover, it achieves efficient association and accurate obstacle avoidance.
Abstract:The constrained combinatorial multi-armed bandit model has been widely employed to solve problems in wireless networking and related areas, including the problem of wireless scheduling for throughput optimization under unknown channel conditions. Most work in this area uses an algorithm design strategy that combines a bandit learning algorithm with the virtual queue technique to track the throughput constraint violation. These algorithms seek to minimize the virtual queue length in their algorithm design. However, in networks where channel conditions change abruptly, the resulting constraints may become infeasible, leading to unbounded growth in virtual queue lengths. In this paper, we make the key observation that the dynamics of the head-of-line age, i.e. the age of the oldest packet in the virtual queue, make it more robust when used in algorithm design compared to the virtual queue length. We therefore design a learning-based scheduling policy that uses the head-of-line age in place of the virtual queue length. We show that our policy matches state-of-the-art performance under i.i.d. network conditions. Crucially, we also show that the system remains stable even under abrupt changes in channel conditions and can rapidly recover from periods of constraint infeasibility.
Abstract:GUI agents that interact with graphical interfaces on behalf of users represent a promising direction for practical AI assistants. However, training such agents is hindered by the scarcity of suitable environments. We present InfiniteWeb, a system that automatically generates functional web environments at scale for GUI agent training. While LLMs perform well on generating a single webpage, building a realistic and functional website with many interconnected pages faces challenges. We address these challenges through unified specification, task-centric test-driven development, and a combination of website seed with reference design image to ensure diversity. Our system also generates verifiable task evaluators enabling dense reward signals for reinforcement learning. Experiments show that InfiniteWeb surpasses commercial coding agents at realistic website construction, and GUI agents trained on our generated environments achieve significant performance improvements on OSWorld and Online-Mind2Web, demonstrating the effectiveness of proposed system.
Abstract:Computer-Aided Design (CAD) is essential in industrial design, but the complexity of traditional CAD modeling and workflows presents significant challenges for automating the generation of high-precision, editable CAD models. Existing methods that reconstruct 3D models from sketches often produce non-editable and approximate models that fall short of meeting the stringent requirements for precision and editability in industrial design. Moreover, the reliance on text or image-based inputs often requires significant manual annotation, limiting their scalability and applicability in industrial settings. To overcome these challenges, we propose the Heterogeneous Collaborative Multi-Expert Reinforcement Learning (CME-CAD) paradigm, a novel training paradigm for CAD code generation. Our approach integrates the complementary strengths of these models, facilitating collaborative learning and improving the model's ability to generate accurate, constraint-compatible, and fully editable CAD models. We introduce a two-stage training process: Multi-Expert Fine-Tuning (MEFT), and Multi-Expert Reinforcement Learning (MERL). Additionally, we present CADExpert, an open-source benchmark consisting of 17,299 instances, including orthographic projections with precise dimension annotations, expert-generated Chain-of-Thought (CoT) processes, executable CADQuery code, and rendered 3D models.
Abstract:Optimizing CUDA kernels is a challenging and labor-intensive task, given the need for hardware-software co-design expertise and the proprietary nature of high-performance kernel libraries. While recent large language models (LLMs) combined with evolutionary algorithms show promise in automatic kernel optimization, existing approaches often fall short in performance due to their suboptimal agent designs and mismatched evolution representations. This work identifies these mismatches and proposes cuPilot, a strategy-coordinated multi-agent framework that introduces strategy as an intermediate semantic representation for kernel evolution. Key contributions include a strategy-coordinated evolution algorithm, roofline-guided prompting, and strategy-level population initialization. Experimental results show that the generated kernels by cuPilot achieve an average speed up of 3.09$\times$ over PyTorch on a benchmark of 100 kernels. On the GEMM tasks, cuPilot showcases sophisticated optimizations and achieves high utilization of critical hardware units. The generated kernels are open-sourced at https://github.com/champloo2878/cuPilot-Kernels.git.
Abstract:The pervasive threat of jamming attacks, particularly from adaptive jammers capable of optimizing their strategies, poses a significant challenge to the security and reliability of wireless communications. This paper addresses this issue by investigating anti-jamming communications empowered by an active reconfigurable intelligent surface. The strategic interaction between the legitimate system and the adaptive jammer is modeled as a Stackelberg game, where the legitimate user, acting as the leader, proactively designs its strategy while anticipating the jammer's optimal response. We prove the existence of the Stackelberg equilibrium and derive it using a backward induction method. Particularly, the jammer's optimal strategy is embedded into the leader's problem, resulting in a bi-level optimization that jointly considers legitimate transmit power, transmit/receive beamformers, and active reflection. We tackle this complex, non-convex problem by using a block coordinate descent framework, wherein subproblems are iteratively solved via convex relaxation and successive convex approximation techniques. Simulation results demonstrate the significant superiority of the proposed active RIS-assisted scheme in enhancing legitimate transmissions and degrading jamming effects compared to baseline schemes across various scenarios. These findings highlight the effectiveness of combining active RIS technology with a strategic game-theoretic framework for anti-jamming communications.
Abstract:In this paper, a reconfigurable intelligent surface (RIS) assisted cell free massive MIMO (CFmMIMO) framework is designed to enhance physical layer security (PLS) and mitigate multi user (MU) interference in next generation wireless networks. A channel state information (CSI) based precoder is designed at the access point (AP) to suppress MU interference, enabling interference free reception for the legitimate users. To further enhance secrecy performance, we formulate a joint optimization problem that maximizes the secrecy sum rate using an alternating optimization (AO) framework, which iteratively updates the active beamforming at the AP, user power allocation, and the RIS phase shift matrix. The highly nonconvex problem is addressed under the Riemannian manifold optimization (RMO) framework and solved using a Riemannian Conjugate Gradient (RCG) algorithm for RIS phase shift design. Simulation results verify that the proposed framework effectively enhances the secrecy sum rate and eliminates interference, demonstrating its potential for secure and scalable CFmMIMO networks in dense wireless environments.
Abstract:Humanoid agents are expected to emulate the complex coordination inherent in human social behaviors. However, existing methods are largely confined to single-agent scenarios, overlooking the physically plausible interplay essential for multi-agent interactions. To bridge this gap, we propose InterAgent, the first end-to-end framework for text-driven physics-based multi-agent humanoid control. At its core, we introduce an autoregressive diffusion transformer equipped with multi-stream blocks, which decouples proprioception, exteroception, and action to mitigate cross-modal interference while enabling synergistic coordination. We further propose a novel interaction graph exteroception representation that explicitly captures fine-grained joint-to-joint spatial dependencies to facilitate network learning. Additionally, within it we devise a sparse edge-based attention mechanism that dynamically prunes redundant connections and emphasizes critical inter-agent spatial relations, thereby enhancing the robustness of interaction modeling. Extensive experiments demonstrate that InterAgent consistently outperforms multiple strong baselines, achieving state-of-the-art performance. It enables producing coherent, physically plausible, and semantically faithful multi-agent behaviors from only text prompts. Our code and data will be released to facilitate future research.