Abstract:The evolution of Large Language Models (LLMs) has significantly advanced multi-turn conversation systems, emphasizing the need for proactive guidance to enhance users' interactions. However, these systems face challenges in dynamically adapting to shifts in users' goals and maintaining low latency for real-time interactions. In the Baidu Search AI assistant, an industrial-scale multi-turn search system, we propose a novel two-phase framework to provide proactive guidance. The first phase, Goal-adaptive Supervised Fine-Tuning (G-SFT), employs a goal adaptation agent that dynamically adapts to user goal shifts and provides goal-relevant contextual information. G-SFT also incorporates scalable knowledge transfer to distill insights from LLMs into a lightweight model for real-time interaction. The second phase, Click-oriented Reinforcement Learning (C-RL), adopts a generate-rank paradigm, systematically constructs preference pairs from user click signals, and proactively improves click-through rates through more engaging guidance. This dual-phase architecture achieves complementary objectives: G-SFT ensures accurate goal tracking, while C-RL optimizes interaction quality through click signal-driven reinforcement learning. Extensive experiments demonstrate that our framework achieves 86.10% accuracy in offline evaluation (+23.95% over baseline) and 25.28% CTR in online deployment (149.06% relative improvement), while reducing inference latency by 69.55% through scalable knowledge distillation.
Abstract:Diffusion models have shown strong performance in generating high-quality tabular data, but they carry privacy risks by reproducing exact training samples. While prior work focuses on dataset-level augmentation to reduce memorization, little is known about which individual samples contribute most. We present the first data-centric study of memorization dynamics in tabular diffusion models. We quantify memorization for each real sample based on how many generated samples are flagged as replicas, using a relative distance ratio. Our empirical analysis reveals a heavy-tailed distribution of memorization counts: a small subset of samples contributes disproportionately to leakage, confirmed via sample-removal experiments. To understand this, we divide real samples into top- and non-top-memorized groups and analyze their training-time behaviors. We track when each sample is first memorized and monitor per-epoch memorization intensity (AUC). Memorized samples are memorized slightly earlier and show stronger signals in early training. Based on these insights, we propose DynamicCut, a two-stage, model-agnostic mitigation method: (a) rank samples by epoch-wise intensity, (b) prune a tunable top fraction, and (c) retrain on the filtered dataset. Across multiple tabular datasets and models, DynamicCut reduces memorization with minimal impact on data diversity and downstream performance. It also complements augmentation-based defenses. Furthermore, DynamicCut enables cross-model transferability: high-ranked samples identified from one model (e.g., a diffusion model) are also effective for reducing memorization when removed from others, such as GANs and VAEs.
Abstract:Foundation models leveraging vision-language pretraining have shown promise in chest X-ray (CXR) interpretation, yet their real-world performance across diverse populations and diagnostic tasks remains insufficiently evaluated. This study benchmarks the diagnostic performance and generalizability of foundation models versus traditional convolutional neural networks (CNNs) on multinational CXR datasets. We evaluated eight CXR diagnostic models - five vision-language foundation models and three CNN-based architectures - across 37 standardized classification tasks using six public datasets from the USA, Spain, India, and Vietnam, and three private datasets from hospitals in China. Performance was assessed using AUROC, AUPRC, and other metrics across both shared and dataset-specific tasks. Foundation models outperformed CNNs in both accuracy and task coverage. MAVL, a model incorporating knowledge-enhanced prompts and structured supervision, achieved the highest performance on public (mean AUROC: 0.82; AUPRC: 0.32) and private (mean AUROC: 0.95; AUPRC: 0.89) datasets, ranking first in 14 of 37 public and 3 of 4 private tasks. All models showed reduced performance on pediatric cases, with average AUROC dropping from 0.88 +/- 0.18 in adults to 0.57 +/- 0.29 in children (p = 0.0202). These findings highlight the value of structured supervision and prompt design in radiologic AI and suggest future directions including geographic expansion and ensemble modeling for clinical deployment. Code for all evaluated models is available at https://drive.google.com/drive/folders/1B99yMQm7bB4h1sVMIBja0RfUu8gLktCE
Abstract:The pursuit of rate maximization in wireless communication frequently encounters substantial challenges associated with user fairness. This paper addresses these challenges by exploring a novel power allocation approach for delay optimization, utilizing graph neural networks (GNNs)-based reinforcement learning (RL) in device-to-device (D2D) communication. The proposed approach incorporates not only channel state information but also factors such as packet delay, the number of backlogged packets, and the number of transmitted packets into the components of the state information. We adopt a centralized RL method, where a central controller collects and processes the state information. The central controller functions as an agent trained using the proximal policy optimization (PPO) algorithm. To better utilize topology information in the communication network and enhance the generalization of the proposed method, we embed GNN layers into both the actor and critic networks of the PPO algorithm. This integration allows for efficient parameter updates of GNNs and enables the state information to be parameterized as a low-dimensional embedding, which is leveraged by the agent to optimize power allocation strategies. Simulation results demonstrate that the proposed method effectively reduces average delay while ensuring user fairness, outperforms baseline methods, and exhibits scalability and generalization capability.
Abstract:Neural networks are powerful tools for data-driven modeling of complex dynamical systems, enhancing predictive capability for control applications. However, their inherent nonlinearity and black-box nature challenge control designs that prioritize rigorous safety and recursive feasibility guarantees. This paper presents algorithmic methods for synthesizing control invariant sets specifically tailored to neural network based dynamical models. These algorithms employ set recursion, ensuring termination after a finite number of iterations and generating subsets in which closed-loop dynamics are forward invariant, thus guaranteeing perpetual operational safety. Additionally, we propose model predictive control designs that integrate these control invariant sets into mixed-integer optimization, with guaranteed adherence to safety constraints and recursive feasibility at the computational level. We also present a comprehensive theoretical analysis examining the properties and guarantees of the proposed methods. Numerical simulations in an autonomous driving scenario demonstrate the methods' effectiveness in synthesizing control-invariant sets offline and implementing model predictive control online, ensuring safety and recursive feasibility.
Abstract:We present Seed1.5-VL, a vision-language foundation model designed to advance general-purpose multimodal understanding and reasoning. Seed1.5-VL is composed with a 532M-parameter vision encoder and a Mixture-of-Experts (MoE) LLM of 20B active parameters. Despite its relatively compact architecture, it delivers strong performance across a wide spectrum of public VLM benchmarks and internal evaluation suites, achieving the state-of-the-art performance on 38 out of 60 public benchmarks. Moreover, in agent-centric tasks such as GUI control and gameplay, Seed1.5-VL outperforms leading multimodal systems, including OpenAI CUA and Claude 3.7. Beyond visual and video understanding, it also demonstrates strong reasoning abilities, making it particularly effective for multimodal reasoning challenges such as visual puzzles. We believe these capabilities will empower broader applications across diverse tasks. In this report, we mainly provide a comprehensive review of our experiences in building Seed1.5-VL across model design, data construction, and training at various stages, hoping that this report can inspire further research. Seed1.5-VL is now accessible at https://www.volcengine.com/ (Volcano Engine Model ID: doubao-1-5-thinking-vision-pro-250428)
Abstract:This study presents an advanced wireless system that embeds target recognition within reconfigurable intelligent surface (RIS)-aided communication systems, powered by cuttingedge deep learning innovations. Such a system faces the challenge of fine-tuning both the RIS phase shifts and neural network (NN) parameters, since they intricately interdepend on each other to accomplish the recognition task. To address these challenges, we propose an intelligent recognizer that strategically harnesses every piece of prior action responses, thereby ingeniously multiplexing downlink signals to facilitate environment sensing. Specifically, we design a novel NN based on the long short-term memory (LSTM) architecture and the physical channel model. The NN iteratively captures and fuses information from previous measurements and adaptively customizes RIS configurations to acquire the most relevant information for the recognition task in subsequent moments. Tailored dynamically, these configurations adapt to the scene, task, and target specifics. Simulation results reveal that our proposed method significantly outperforms the state-of-the-art method, while resulting in minimal impacts on communication performance, even as sensing is performed simultaneously.
Abstract:The low-altitude economy has emerged as a critical focus for future economic development, emphasizing the urgent need for flight activity surveillance utilizing the existing sensing capabilities of mobile cellular networks. Traditional monostatic or localization-based sensing methods, however, encounter challenges in fusing sensing results and matching channel parameters. To address these challenges, we propose an innovative approach that directly draws the radio images of the low-altitude space, leveraging its inherent sparsity with compressed sensing (CS)-based algorithms and the cooperation of multiple base stations. Furthermore, recognizing that unmanned aerial vehicles (UAVs) are randomly distributed in space, we introduce a physics-embedded learning method to overcome off-grid issues inherent in CS-based models. Additionally, an online hard example mining method is incorporated into the design of the loss function, enabling the network to adaptively concentrate on the samples bearing significant discrepancy with the ground truth, thereby enhancing its ability to detect the rare UAVs within the expansive low-altitude space. Simulation results demonstrate the effectiveness of the imaging-based low-altitude surveillance approach, with the proposed physics-embedded learning algorithm significantly outperforming traditional CS-based methods under off-grid conditions.
Abstract:Despite continuous advancements in cancer treatment, brain metastatic disease remains a significant complication of primary cancer and is associated with an unfavorable prognosis. One approach for improving diagnosis, management, and outcomes is to implement algorithms based on artificial intelligence for the automated segmentation of both pre- and post-treatment MRI brain images. Such algorithms rely on volumetric criteria for lesion identification and treatment response assessment, which are still not available in clinical practice. Therefore, it is critical to establish tools for rapid volumetric segmentations methods that can be translated to clinical practice and that are trained on high quality annotated data. The BraTS-METS 2025 Lighthouse Challenge aims to address this critical need by establishing inter-rater and intra-rater variability in dataset annotation by generating high quality annotated datasets from four individual instances of segmentation by neuroradiologists while being recorded on video (two instances doing "from scratch" and two instances after AI pre-segmentation). This high-quality annotated dataset will be used for testing phase in 2025 Lighthouse challenge and will be publicly released at the completion of the challenge. The 2025 Lighthouse challenge will also release the 2023 and 2024 segmented datasets that were annotated using an established pipeline of pre-segmentation, student annotation, two neuroradiologists checking, and one neuroradiologist finalizing the process. It builds upon its previous edition by including post-treatment cases in the dataset. Using these high-quality annotated datasets, the 2025 Lighthouse challenge plans to test benchmark algorithms for automated segmentation of pre-and post-treatment brain metastases (BM), trained on diverse and multi-institutional datasets of MRI images obtained from patients with brain metastases.
Abstract:Geocoding systems are widely used in both scientific research for spatial analysis and everyday life through location-based services. The quality of geocoded data significantly impacts subsequent processes and applications, underscoring the need for next-generation systems. In response to this demand, this review first examines the evolving requirements for geocoding inputs and outputs across various scenarios these systems must address. It then provides a detailed analysis of how to construct such systems by breaking them down into key functional components and reviewing a broad spectrum of existing approaches, from traditional rule-based methods to advanced techniques in information retrieval, natural language processing, and large language models. Finally, we identify opportunities to improve next-generation geocoding systems in light of recent technological advances.