Alphabetical order by last name
Abstract:Batch size scheduling (BSS) plays a critical role in large-scale deep learning training, influencing both optimization dynamics and computational efficiency. Yet, its theoretical foundations remain poorly understood. In this work, we show that the functional scaling law (FSL) framework introduced in Li et al. (2025a) provides a principled lens for analyzing BSS. Specifically, we characterize the optimal BSS under a fixed data budget and show that its structure depends sharply on task difficulty. For easy tasks, optimal schedules keep increasing batch size throughout. In contrast, for hard tasks, the optimal schedule maintains small batch sizes for most of training and switches to large batches only in a late stage. To explain the emergence of late switching, we uncover a dynamical mechanism -- the fast catch-up effect -- which also manifests in large language model (LLM) pretraining. After switching from small to large batches, the loss rapidly aligns with the constant large-batch trajectory. Using FSL, we show that this effect stems from rapid forgetting of accumulated gradient noise, with the catch-up speed determined by task difficulty. Crucially, this effect implies that large batches can be safely deferred to late training without sacrificing performance, while substantially reducing data consumption. Finally, extensive LLM pretraining experiments -- covering both Dense and MoE architectures with up to 1.1B parameters and 1T tokens -- validate our theoretical predictions. Across all settings, late-switch schedules consistently outperform constant-batch and early-switch baselines.
Abstract:While FP8 attention has shown substantial promise in innovations like FlashAttention-3, its integration into the decoding phase of the DeepSeek Multi-head Latent Attention (MLA) architecture presents notable challenges. These challenges include numerical heterogeneity arising from the decoupling of positional embeddings, misalignment of quantization scales in FP8 PV GEMM, and the need for optimized system-level support. In this paper, we introduce SnapMLA, an FP8 MLA decoding framework optimized to improve long-context efficiency through the following hardware-aware algorithm-kernel co-optimization techniques: (i) RoPE-Aware Per-Token KV Quantization, where the RoPE part is maintained in high precision, motivated by our comprehensive analysis of the heterogeneous quantization sensitivity inherent to the MLA KV cache. Furthermore, per-token granularity is employed to align with the autoregressive decoding process and maintain quantization accuracy. (ii) Quantized PV Computation Pipeline Reconstruction, which resolves the misalignment of quantization scale in FP8 PV computation stemming from the shared KV structure of the MLA KV cache. (iii) End-to-End Dataflow Optimization, where we establish an efficient data read-and-write workflow using specialized kernels, ensuring efficient data flow and performance gains. Extensive experiments on state-of-the-art MLA LLMs show that SnapMLA achieves up to a 1.91x improvement in throughput, with negligible risk of performance degradation in challenging long-context tasks, including mathematical reasoning and code generation benchmarks. Code is available at https://github.com/meituan-longcat/SGLang-FluentLLM.
Abstract:Recent advances in large language models have enabled LLM-based agents to achieve strong performance on a variety of benchmarks. However, their performance in real-world deployments often that observed on benchmark settings, especially in complex and imperfect environments. This discrepancy largely arises because prevailing training and evaluation paradigms are typically built on idealized assumptions, overlooking the inherent stochasticity and noise present in real-world interactions. To bridge this gap, we introduce AgentNoiseBench, a framework for systematically evaluating the robustness of agentic models under noisy environments. We first conduct an in-depth analysis of biases and uncertainties in real-world scenarios and categorize environmental noise into two primary types: user-noise and tool-noise. Building on this analysis, we develop an automated pipeline that injects controllable noise into existing agent-centric benchmarks while preserving task solvability. Leveraging this pipeline, we perform extensive evaluations across a wide range of models with diverse architectures and parameter scales. Our results reveal consistent performance variations under different noise conditions, highlighting the sensitivity of current agentic models to realistic environmental perturbations.
Abstract:Recent large language models (LLMs) achieve strong performance in generating promising reasoning paths for complex tasks. However, despite powerful generation ability, LLMs remain weak at verifying their own answers, revealing a persistent capability asymmetry between generation and self-verification. In this work, we conduct an in-depth investigation of this asymmetry throughout training evolution and show that, even on the same task, improving generation does not lead to corresponding improvements in self-verification. Interestingly, we find that the reverse direction of this asymmetry behaves differently: learning to self-verify can effectively improve generation performance, achieving accuracy comparable to standard generation training while yielding more efficient and effective reasoning traces. Building on this observation, we further explore integrating self-verification into generation training by formulating a multi-task reinforcement learning framework, where generation and self-verification are optimized as two independent but complementary objectives. Extensive experiments across benchmarks and models demonstrate performance gains over generation-only training in both generation and verification capabilities.
Abstract:Training generalist agents capable of adapting to diverse scenarios requires interactive environments for self-exploration. However, interactive environments remain critically scarce, and existing synthesis methods suffer from significant limitations regarding environmental diversity and scalability. To address these challenges, we introduce ScaleEnv, a framework that constructs fully interactive environments and verifiable tasks entirely from scratch. Specifically, ScaleEnv ensures environment reliability through procedural testing, and guarantees task completeness and solvability via tool dependency graph expansion and executable action verification. By enabling agents to learn through exploration within ScaleEnv, we demonstrate significant performance improvements on unseen, multi-turn tool-use benchmarks such as $τ^2$-Bench and VitaBench, highlighting strong generalization capabilities. Furthermore, we investigate the relationship between increasing number of domains and model generalization performance, providing empirical evidence that scaling environmental diversity is critical for robust agent learning.
Abstract:Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a key approach for enhancing LLM reasoning.However, standard frameworks like Group Relative Policy Optimization (GRPO) typically employ a uniform rollout budget, leading to resource inefficiency. Moreover, existing adaptive methods often rely on instance-level metrics, such as task pass rates, failing to capture the model's dynamic learning state. To address these limitations, we propose CoBA-RL, a reinforcement learning algorithm designed to adaptively allocate rollout budgets based on the model's evolving capability. Specifically, CoBA-RL utilizes a Capability-Oriented Value function to map tasks to their potential training gains and employs a heap-based greedy strategy to efficiently self-calibrate the distribution of computational resources to samples with high training value. Extensive experiments demonstrate that our approach effectively orchestrates the trade-off between exploration and exploitation, delivering consistent generalization improvements across multiple challenging benchmarks. These findings underscore that quantifying sample training value and optimizing budget allocation are pivotal for advancing LLM post-training efficiency.
Abstract:We propose Infinite-World, a robust interactive world model capable of maintaining coherent visual memory over 1000+ frames in complex real-world environments. While existing world models can be efficiently optimized on synthetic data with perfect ground-truth, they lack an effective training paradigm for real-world videos due to noisy pose estimations and the scarcity of viewpoint revisits. To bridge this gap, we first introduce a Hierarchical Pose-free Memory Compressor (HPMC) that recursively distills historical latents into a fixed-budget representation. By jointly optimizing the compressor with the generative backbone, HPMC enables the model to autonomously anchor generations in the distant past with bounded computational cost, eliminating the need for explicit geometric priors. Second, we propose an Uncertainty-aware Action Labeling module that discretizes continuous motion into a tri-state logic. This strategy maximizes the utilization of raw video data while shielding the deterministic action space from being corrupted by noisy trajectories, ensuring robust action-response learning. Furthermore, guided by insights from a pilot toy study, we employ a Revisit-Dense Finetuning Strategy using a compact, 30-minute dataset to efficiently activate the model's long-range loop-closure capabilities. Extensive experiments, including objective metrics and user studies, demonstrate that Infinite-World achieves superior performance in visual quality, action controllability, and spatial consistency.
Abstract:Policy gradient methods rely on a baseline to measure the relative advantage of an action, ensuring the model reinforces behaviors that outperform its current average capability. In the training of Large Language Models (LLMs) using Actor-Critic methods (e.g., PPO), this baseline is typically estimated by a Value Model (Critic) often as large as the policy model itself. However, as the policy continuously evolves, the value model requires expensive, synchronous incremental training to accurately track the shifting capabilities of the policy. To avoid this overhead, Group Relative Policy Optimization (GRPO) eliminates the coupled value model by using the average reward of a group of rollouts as the baseline; yet, this approach necessitates extensive sampling to maintain estimation stability. In this paper, we propose $V_0$, a Generalist Value Model capable of estimating the expected performance of any model on unseen prompts without requiring parameter updates. We reframe value estimation by treating the policy's dynamic capability as an explicit context input; specifically, we leverage a history of instruction-performance pairs to dynamically profile the model, departing from the traditional paradigm that relies on parameter fitting to perceive capability shifts. Focusing on value estimation at State Zero (i.e., the initial prompt, hence $V_0$), our model serves as a critical resource scheduler. During GRPO training, $V_0$ predicts success rates prior to rollout, allowing for efficient sampling budget allocation; during deployment, it functions as a router, dispatching instructions to the most cost-effective and suitable model. Empirical results demonstrate that $V_0$ significantly outperforms heuristic budget allocation and achieves a Pareto-optimal trade-off between performance and cost in LLM routing tasks.
Abstract:Autoregressive (AR) large audio language models (LALMs) such as Qwen-2.5-Omni have achieved strong performance on audio understanding and interaction, but scaling them remains costly in data and computation, and strictly sequential decoding limits inference efficiency. Diffusion large language models (dLLMs) have recently been shown to make effective use of limited training data, and prior work on DIFFA indicates that replacing an AR backbone with a diffusion counterpart can substantially improve audio understanding under matched settings, albeit at a proof-of-concept scale without large-scale instruction tuning, preference alignment, or practical decoding schemes. We introduce DIFFA-2, a practical diffusion-based LALM for general audio understanding. DIFFA-2 upgrades the speech encoder, employs dual semantic and acoustic adapters, and is trained with a four-stage curriculum that combines semantic and acoustic alignment, large-scale supervised fine-tuning, and variance-reduced preference optimization, using only fully open-source corpora. Experiments on MMSU, MMAU, and MMAR show that DIFFA-2 consistently improves over DIFFA and is competitive to strong AR LALMs under practical training budgets, supporting diffusion-based modeling is a viable backbone for large-scale audio understanding. Our code is available at https://github.com/NKU-HLT/DIFFA.git.
Abstract:The success of Large Language Models (LLMs) hinges on the stable training of deep Transformer architectures. A critical design choice is the placement of normalization layers, leading to a fundamental trade-off: the ``PreNorm'' architecture ensures training stability at the cost of potential performance degradation in deep models, while the ``PostNorm'' architecture offers strong performance but suffers from severe training instability. In this work, we propose SpanNorm, a novel technique designed to resolve this dilemma by integrating the strengths of both paradigms. Structurally, SpanNorm establishes a clean residual connection that spans the entire transformer block to stabilize signal propagation, while employing a PostNorm-style computation that normalizes the aggregated output to enhance model performance. We provide a theoretical analysis demonstrating that SpanNorm, combined with a principled scaling strategy, maintains bounded signal variance throughout the network, preventing the gradient issues that plague PostNorm models, and also alleviating the representation collapse of PreNorm. Empirically, SpanNorm consistently outperforms standard normalization schemes in both dense and Mixture-of-Experts (MoE) scenarios, paving the way for more powerful and stable Transformer architectures.