Abstract:Large language models (LLMs) have ushered in a new era for document-level machine translation (\textit{doc}-mt), yet their whole-document outputs challenge existing evaluation methods that assume sentence-by-sentence alignment. We introduce \textit{\textbf{Align-then-Slide}}, a complete evaluation framework for ultra-long doc-mt. In the Align stage, we automatically infer sentence-level source-target correspondences and rebuild the target to match the source sentence number, resolving omissions and many-to-one/one-to-many mappings. In the n-Chunk Sliding Evaluate stage, we calculate averaged metric scores under 1-, 2-, 3- and 4-chunk for multi-granularity assessment. Experiments on the WMT benchmark show a Pearson correlation of 0.929 between our method with expert MQM rankings. On a newly curated real-world test set, our method again aligns closely with human judgments. Furthermore, preference data produced by Align-then-Slide enables effective CPO training and its direct use as a reward model for GRPO, both yielding translations preferred over a vanilla SFT baseline. The results validate our framework as an accurate, robust, and actionable evaluation tool for doc-mt systems.
Abstract:Domain Generalization (DG) has been recently explored to enhance the generalizability of Point Cloud Classification (PCC) models toward unseen domains. Prior works are based on convolutional networks, Transformer or Mamba architectures, either suffering from limited receptive fields or high computational cost, or insufficient long-range dependency modeling. RWKV, as an emerging architecture, possesses superior linear complexity, global receptive fields, and long-range dependency. In this paper, we present the first work that studies the generalizability of RWKV models in DG PCC. We find that directly applying RWKV to DG PCC encounters two significant challenges: RWKV's fixed direction token shift methods, like Q-Shift, introduce spatial distortions when applied to unstructured point clouds, weakening local geometric modeling and reducing robustness. In addition, the Bi-WKV attention in RWKV amplifies slight cross-domain differences in key distributions through exponential weighting, leading to attention shifts and degraded generalization. To this end, we propose PointDGRWKV, the first RWKV-based framework tailored for DG PCC. It introduces two key modules to enhance spatial modeling and cross-domain robustness, while maintaining RWKV's linear efficiency. In particular, we present Adaptive Geometric Token Shift to model local neighborhood structures to improve geometric context awareness. In addition, Cross-Domain key feature Distribution Alignment is designed to mitigate attention drift by aligning key feature distributions across domains. Extensive experiments on multiple benchmarks demonstrate that PointDGRWKV achieves state-of-the-art performance on DG PCC.
Abstract:End-to-end automatic speech recognition systems often fail to transcribe domain-specific named entities, causing catastrophic failures in downstream tasks. Numerous fast and lightweight named entity correction (NEC) models have been proposed in recent years. These models, mainly leveraging phonetic-level edit distance algorithms, have shown impressive performances. However, when the forms of the wrongly-transcribed words(s) and the ground-truth entity are significantly different, these methods often fail to locate the wrongly transcribed words in hypothesis, thus limiting their usage. We propose a novel NEC method that utilizes speech sound features to retrieve candidate entities. With speech sound features and candidate entities, we inovatively design a generative method to annotate entity errors in ASR transcripts and replace the text with correct entities. This method is effective in scenarios of word form difference. We test our method using open-source and self-constructed test sets. The results demonstrate that our NEC method can bring significant improvement to entity accuracy. We will open source our self-constructed test set and training data.
Abstract:Chain-of-Thought (CoT) prompting significantly enhances model reasoning, yet its internal mechanisms remain poorly understood. We analyze CoT's operational principles by reversely tracing information flow across decoding, projection, and activation phases. Our quantitative analysis suggests that CoT may serve as a decoding space pruner, leveraging answer templates to guide output generation, with higher template adherence strongly correlating with improved performance. Furthermore, we surprisingly find that CoT modulates neuron engagement in a task-dependent manner: reducing neuron activation in open-domain tasks, yet increasing it in closed-domain scenarios. These findings offer a novel mechanistic interpretability framework and critical insights for enabling targeted CoT interventions to design more efficient and robust prompts. We released our code and data at https://anonymous.4open.science/r/cot-D247.
Abstract:The increasing frequency of extreme weather events due to global climate change urges accurate weather prediction. Recently, great advances have been made by the \textbf{end-to-end methods}, thanks to deep learning techniques, but they face limitations of \textit{representation inconsistency} in multivariable integration and struggle to effectively capture the dependency between variables, which is required in complex weather systems. Treating different variables as distinct modalities and applying a \textbf{two-stage training approach} from multimodal models can partially alleviate this issue, but due to the inconformity in training tasks between the two stages, the results are often suboptimal. To address these challenges, we propose an implicit two-stage training method, configuring separate encoders and decoders for each variable. In detailed, in the first stage, the Translator is frozen while the Encoders and Decoders learn a shared latent space, in the second stage, the Encoders and Decoders are frozen, and the Translator captures inter-variable interactions for prediction. Besides, by introducing a self-attention mechanism for multivariable fusion in the latent space, the performance achieves further improvements. Empirically, extensive experiments show the state-of-the-art performance of our method. Specifically, it reduces the MSE for near-surface air temperature and relative humidity predictions by 28.82\% and 23.39\%, respectively. The source code is available at https://github.com/ShremG/Met2Net.
Abstract:Notable breakthroughs in unified understanding and generation modeling have led to remarkable advancements in image understanding, reasoning, production and editing, yet current foundational models predominantly focus on processing images, creating a gap in the development of unified models for video understanding and generation. This report presents Omni-Video, an efficient and effective unified framework for video understanding, generation, as well as instruction-based editing. Our key insight is to teach existing multimodal large language models (MLLMs) to produce continuous visual clues that are used as the input of diffusion decoders, which produce high-quality videos conditioned on these visual clues. To fully unlock the potential of our system for unified video modeling, we integrate several technical improvements: 1) a lightweight architectural design that respectively attaches a vision head on the top of MLLMs and a adapter before the input of diffusion decoders, the former produce visual tokens for the latter, which adapts these visual tokens to the conditional space of diffusion decoders; and 2) an efficient multi-stage training scheme that facilitates a fast connection between MLLMs and diffusion decoders with limited data and computational resources. We empirically demonstrate that our model exhibits satisfactory generalization abilities across video generation, editing and understanding tasks.
Abstract:Recently, data-driven methods have shown great promise for discovering governing equations from simulation or experimental data. However, most existing approaches are limited to scalar equations, with few capable of identifying tensor relationships. In this work, we propose a general data-driven framework for identifying tensor equations, referred to as Symbolic Identification of Tensor Equations (SITE). The core idea of SITE--representing tensor equations using a host-plasmid structure--is inspired by the multidimensional gene expression programming (M-GEP) approach. To improve the robustness of the evolutionary process, SITE adopts a genetic information retention strategy. Moreover, SITE introduces two key innovations beyond conventional evolutionary algorithms. First, it incorporates a dimensional homogeneity check to restrict the search space and eliminate physically invalid expressions. Second, it replaces traditional linear scaling with a tensor linear regression technique, greatly enhancing the efficiency of numerical coefficient optimization. We validate SITE using two benchmark scenarios, where it accurately recovers target equations from synthetic data, showing robustness to noise and small sample sizes. Furthermore, SITE is applied to identify constitutive relations directly from molecular simulation data, which are generated without reliance on macroscopic constitutive models. It adapts to both compressible and incompressible flow conditions and successfully identifies the corresponding macroscopic forms, highlighting its potential for data-driven discovery of tensor equation.
Abstract:In medical imaging, 4D MRI enables dynamic 3D visualization, yet the trade-off between spatial and temporal resolution requires prolonged scan time that can compromise temporal fidelity--especially during rapid, large-amplitude motion. Traditional approaches typically rely on registration-based interpolation to generate intermediate frames. However, these methods struggle with large deformations, resulting in misregistration, artifacts, and diminished spatial consistency. To address these challenges, we propose TSSC-Net, a novel framework that generates intermediate frames while preserving spatial consistency. To improve temporal fidelity under fast motion, our diffusion-based temporal super-resolution network generates intermediate frames using the start and end frames as key references, achieving 6x temporal super-resolution in a single inference step. Additionally, we introduce a novel tri-directional Mamba-based module that leverages long-range contextual information to effectively resolve spatial inconsistencies arising from cross-slice misalignment, thereby enhancing volumetric coherence and correcting cross-slice errors. Extensive experiments were performed on the public ACDC cardiac MRI dataset and a real-world dynamic 4D knee joint dataset. The results demonstrate that TSSC-Net can generate high-resolution dynamic MRI from fast-motion data while preserving structural fidelity and spatial consistency.
Abstract:With the rapid development of digital pathology, virtual staining has become a key technology in multimedia medical information systems, offering new possibilities for the analysis and diagnosis of pathological images. However, existing H&E-to-IHC studies often overlook the cross-channel correlations between cell nuclei and cell membranes. To address this issue, we propose a novel Cross-Channel Perception Learning (CCPL) strategy. Specifically, CCPL first decomposes HER2 immunohistochemical staining into Hematoxylin and DAB staining channels, corresponding to cell nuclei and cell membranes, respectively. Using the pathology foundation model Gigapath's Tile Encoder, CCPL extracts dual-channel features from both the generated and real images and measures cross-channel correlations between nuclei and membranes. The features of the generated and real stained images, obtained through the Tile Encoder, are also used to calculate feature distillation loss, enhancing the model's feature extraction capabilities without increasing the inference burden. Additionally, CCPL performs statistical analysis on the focal optical density maps of both single channels to ensure consistency in staining distribution and intensity. Experimental results, based on quantitative metrics such as PSNR, SSIM, PCC, and FID, along with professional evaluations from pathologists, demonstrate that CCPL effectively preserves pathological features, generates high-quality virtual stained images, and provides robust support for automated pathological diagnosis using multimedia medical data.
Abstract:Diffusion-based models have gained wide adoption in the virtual human generation due to their outstanding expressiveness. However, their substantial computational requirements have constrained their deployment in real-time interactive avatar applications, where stringent speed, latency, and duration requirements are paramount. We present a novel audio-driven portrait video generation framework based on the diffusion model to address these challenges. Firstly, we propose robust variable-length video generation to reduce the minimum time required to generate the initial video clip or state transitions, which significantly enhances the user experience. Secondly, we propose a consistency model training strategy for Audio-Image-to-Video to ensure real-time performance, enabling a fast few-step generation. Model quantization and pipeline parallelism are further employed to accelerate the inference speed. To mitigate the stability loss incurred by the diffusion process and model quantization, we introduce a new inference strategy tailored for long-duration video generation. These methods ensure real-time performance and low latency while maintaining high-fidelity output. Thirdly, we incorporate class labels as a conditional input to seamlessly switch between speaking, listening, and idle states. Lastly, we design a novel mechanism for fine-grained facial expression control to exploit our model's inherent capacity. Extensive experiments demonstrate that our approach achieves low-latency, fluid, and authentic two-way communication. On an NVIDIA RTX 4090D, our model achieves a maximum of 78 FPS at a resolution of 384x384 and 45 FPS at a resolution of 512x512, with an initial video generation latency of 140 ms and 215 ms, respectively.