Abstract:As LLM-based agents are deployed in increasingly complex real-world settings, existing benchmarks underrepresent key challenges such as enforcing global constraints, coordinating multi-tool reasoning, and adapting to evolving user behavior over long, multi-turn interactions. To bridge this gap, we introduce \textbf{TRIP-Bench}, a long-horizon benchmark grounded in realistic travel-planning scenarios. TRIP-Bench leverages real-world data, offers 18 curated tools and 40+ travel requirements, and supports automated evaluation. It includes splits of varying difficulty; the hard split emphasizes long and ambiguous interactions, style shifts, feasibility changes, and iterative version revision. Dialogues span up to 15 user turns, can involve 150+ tool calls, and may exceed 200k tokens of context. Experiments show that even advanced models achieve at most 50\% success on the easy split, with performance dropping below 10\% on hard subsets. We further propose \textbf{GTPO}, an online multi-turn reinforcement learning method with specialized reward normalization and reward differencing. Applied to Qwen2.5-32B-Instruct, GTPO improves constraint satisfaction and interaction robustness, outperforming Gemini-3-Pro in our evaluation. We expect TRIP-Bench to advance practical long-horizon interactive agents, and GTPO to provide an effective online RL recipe for robust long-horizon training.
Abstract:Autoregressive (AR) large audio language models (LALMs) such as Qwen-2.5-Omni have achieved strong performance on audio understanding and interaction, but scaling them remains costly in data and computation, and strictly sequential decoding limits inference efficiency. Diffusion large language models (dLLMs) have recently been shown to make effective use of limited training data, and prior work on DIFFA indicates that replacing an AR backbone with a diffusion counterpart can substantially improve audio understanding under matched settings, albeit at a proof-of-concept scale without large-scale instruction tuning, preference alignment, or practical decoding schemes. We introduce DIFFA-2, a practical diffusion-based LALM for general audio understanding. DIFFA-2 upgrades the speech encoder, employs dual semantic and acoustic adapters, and is trained with a four-stage curriculum that combines semantic and acoustic alignment, large-scale supervised fine-tuning, and variance-reduced preference optimization, using only fully open-source corpora. Experiments on MMSU, MMAU, and MMAR show that DIFFA-2 consistently improves over DIFFA and is competitive to strong AR LALMs under practical training budgets, supporting diffusion-based modeling is a viable backbone for large-scale audio understanding. Our code is available at https://github.com/NKU-HLT/DIFFA.git.
Abstract:End-to-end Spoken Language Models (SLMs) hold great potential for paralinguistic perception, and numerous studies have aimed to enhance their capabilities, particularly for empathetic dialogue. However, current approaches largely depend on rigid supervised signals, such as ground-truth response in supervised fine-tuning or preference scores in reinforcement learning. Such reliance is fundamentally limited for modeling complex empathy, as there is no single "correct" response and a simple numerical score cannot fully capture the nuances of emotional expression or the appropriateness of empathetic behavior. To address these limitations, we sequentially introduce EmpathyEval, a descriptive natural-language-based evaluation model for assessing empathetic quality in spoken dialogues. Building upon EmpathyEval, we propose ReEmpathy, an end-to-end SLM that enhances empathetic dialogue through a novel Empathetic Self-Reflective Alternating Inference mechanism, which interleaves spoken response generation with free-form, empathy-related reflective reasoning. Extensive experiments demonstrate that ReEmpathy substantially improves empathy-sensitive spoken dialogue by enabling reflective reasoning, offering a promising approach toward more emotionally intelligent and empathy-aware human-computer interactions.
Abstract:As the development of Large Language Models (LLMs) shifts from parameter scaling to inference-time collaboration, the Mixture-of-Agents (MoA) framework has emerged as a general paradigm to harness collective intelligence by layering diverse models. While recent MoA variants have introduced dynamic routing and residual connections to improve efficiency, these methods often fail to facilitate deep semantic interaction between agents, limiting the system's ability to actively correct hallucinations and refine logic. In this paper, we introduce Attention-MoA, a novel MoA-based framework that redefines collaboration through Inter-agent Semantic Attention. Complemented by an Inter-layer Residual Module with Adaptive Early Stopping Mechanism, our architecture mitigates information degradation in deep layers while improving computational efficiency. Extensive evaluations across AlpacaEval 2.0, MT-Bench, and FLASK demonstrate that Attention-MoA significantly outperforms state-of-the-art baselines, achieving a 91.15% Length-Controlled Win Rate on AlpacaEval 2.0 and dominating in 10 out of 12 capabilities on FLASK. Notably, Attention-MoA enables an ensemble of small open-source models to outperform massive proprietary models like Claude-4.5-Sonnet and GPT-4.1, achieving an MT-Bench score of 8.83 and an AlpacaEval 2.0 LC Win Rate of 77.36%.
Abstract:To improve Multi-step Mathematical Reasoning (MsMR) of Large Language Models (LLMs), it is crucial to obtain scalable supervision from the corpus by automatically critiquing mistakes in the reasoning process of MsMR and rendering a final verdict of the problem-solution. Most existing methods rely on crafting high-quality supervised fine-tuning demonstrations for critiquing capability enhancement and pay little attention to delving into the underlying reason for the poor critiquing performance of LLMs. In this paper, we orthogonally quantify and investigate the potential reason -- imbalanced evaluation preference, and conduct a statistical preference analysis. Motivated by the analysis of the reason, a novel perplexity-aware reinforcement learning algorithm is proposed to rectify the evaluation preference, elevating the critiquing capability. Specifically, to probe into LLMs' critiquing characteristics, a One-to-many Problem-Solution (OPS) benchmark is meticulously constructed to quantify the behavior difference of LLMs when evaluating the problem solutions generated by itself and others. Then, to investigate the behavior difference in depth, we conduct a statistical preference analysis oriented on perplexity and find an intriguing phenomenon -- ``LLMs incline to judge solutions with lower perplexity as correct'', which is dubbed as \textit{imbalanced evaluation preference}. To rectify this preference, we regard perplexity as the baton in the algorithm of Group Relative Policy Optimization, supporting the LLMs to explore trajectories that judge lower perplexity as wrong and higher perplexity as correct. Extensive experimental results on our built OPS and existing available critic benchmarks demonstrate the validity of our method.
Abstract:Detecting abnormal events in real-world customer service dialogues is highly challenging due to the complexity of business data and the dynamic nature of customer interactions. Moreover, models must demonstrate strong out-of-domain (OOD) generalization to enable rapid adaptation across different business scenarios and maximize commercial value. In this work, we propose a novel Adaptive Perplexity-Aware Reinforcement Learning (APARL) framework that leverages the advanced reasoning capabilities of large language models for abnormal event detection. APARL introduces a dual-loop dynamic curriculum learning architecture, enabling the model to progressively focus on more challenging samples as its proficiency increases. This design effectively addresses performance bottlenecks and significantly enhances OOD transferability. Extensive evaluations on food delivery dialogue tasks show that our model achieves significantly enhanced adaptability and robustness, attaining the highest F1 score with an average improvement of 17.19\%, and an average improvement of 9.59\% in OOD transfer tests. This method provides a superior solution for industrial deployment of anomaly detection models, contributing to improved operational efficiency and commercial benefits.
Abstract:Pruning is a widely used technique to compress large language models (LLMs) by removing unimportant weights, but it often suffers from significant performance degradation - especially under semi-structured sparsity constraints. Existing pruning methods primarily focus on estimating the importance of individual weights, which limits their ability to preserve critical capabilities of the model. In this work, we propose a new perspective: rather than merely selecting which weights to prune, we first redistribute parameter importance to make the model inherently more amenable to pruning. By minimizing the information entropy of normalized importance scores, our approach concentrates importance onto a smaller subset of weights, thereby enhancing pruning robustness. We instantiate this idea through DenoiseRotator, which applies learnable orthogonal transformations to the model's weight matrices. Our method is model-agnostic and can be seamlessly integrated with existing pruning techniques such as Magnitude, SparseGPT, and Wanda. Evaluated on LLaMA3, Qwen2.5, and Mistral models under 50% unstructured and 2:4 semi-structured sparsity, DenoiseRotator consistently improves perplexity and zero-shot accuracy. For instance, on LLaMA3-70B pruned with SparseGPT at 2:4 semi-structured sparsity, DenoiseRotator reduces the perplexity gap to the dense model by 58%, narrowing the degradation from 8.1 to 3.4 points. Codes are available at https://github.com/Axel-gu/DenoiseRotator.
Abstract:Reasoning large language models (LLMs) excel in complex tasks, which has drawn significant attention to reinforcement learning (RL) for LLMs. However, existing approaches allocate an equal number of rollouts to all questions during the RL process, which is inefficient. This inefficiency stems from the fact that training on simple questions yields limited gains, whereas more rollouts are needed for challenging questions to sample correct answers. Furthermore, while RL improves response precision, it limits the model's exploration ability, potentially resulting in a performance cap below that of the base model prior to RL. To address these issues, we propose a mechanism for dynamically allocating rollout budgets based on the difficulty of the problems, enabling more efficient RL training. Additionally, we introduce an adaptive dynamic temperature adjustment strategy to maintain the entropy at a stable level, thereby encouraging sufficient exploration. This enables LLMs to improve response precision while preserving their exploratory ability to uncover potential correct pathways. The code and data is available on: https://github.com/LiaoMengqi/E3-RL4LLMs
Abstract:Large reasoning models (LRMs) achieve remarkable performance via long reasoning chains, but often incur excessive computational overhead due to redundant reasoning, especially on simple tasks. In this work, we systematically quantify the upper bounds of LRMs under both Long-Thinking and No-Thinking modes, and uncover the phenomenon of "Internal Self-Recovery Mechanism" where models implicitly supplement reasoning during answer generation. Building on this insight, we propose Adaptive Self-Recovery Reasoning (ASRR), a framework that suppresses unnecessary reasoning and enables implicit recovery. By introducing accuracy-aware length reward regulation, ASRR adaptively allocates reasoning effort according to problem difficulty, achieving high efficiency with negligible performance sacrifice. Experiments across multiple benchmarks and models show that, compared with GRPO, ASRR reduces reasoning budget by up to 32.5% (1.5B) and 25.7% (7B) with minimal accuracy loss (1.2% and 0.6% pass@1), and significantly boosts harmless rates on safety benchmarks (up to +21.7%). Our results highlight the potential of ASRR for enabling efficient, adaptive, and safer reasoning in LRMs.
Abstract:Parameter quantization for Large Language Models (LLMs) has attracted increasing attentions recently in reducing memory costs and improving computational efficiency. Early approaches have been widely adopted. However, the existing methods suffer from poor performance in low-bit (such as 2 to 3 bits) scenarios. In this paper, we present a novel and effective Column-Level Adaptive weight Quantization (CLAQ) framework by introducing three different types of adaptive strategies for LLM quantization. Firstly, a K-Means clustering based algorithm is proposed that allows dynamic generation of quantization centroids for each column of a parameter matrix. Secondly, we design an outlier-guided adaptive precision search strategy which can dynamically assign varying bit-widths to different columns. Finally, a dynamic outlier reservation scheme is developed to retain some parameters in their original float point precision, in trade off of boosted model performance. Experiments on various mainstream open source LLMs including LLaMA-1, LLaMA-2 and Yi demonstrate that our methods achieve the state-of-the-art results across different bit settings, especially in extremely low-bit scenarios. Code will be released soon.