School of Information and Communication Engineering, Xidian University, Xi'an, China
Abstract:Legal Article Prediction (LAP) is a critical task in legal text classification, leveraging natural language processing (NLP) techniques to automatically predict relevant legal articles based on the fact descriptions of cases. As a foundational step in legal decision-making, LAP plays a pivotal role in determining subsequent judgments, such as charges and penalties. Despite its importance, existing methods face significant challenges in addressing the complexities of LAP. Supervised classification models (SCMs), such as CNN and BERT, struggle to fully capture intricate fact patterns due to their inherent limitations. Conversely, large language models (LLMs), while excelling in generative tasks, perform suboptimally in predictive scenarios due to the abstract and ID-based nature of legal articles. Furthermore, the diversity of legal systems across jurisdictions exacerbates the issue, as most approaches are tailored to specific countries and lack broader applicability. To address these limitations, we propose Uni-LAP, a universal framework for legal article prediction that integrates the strengths of SCMs and LLMs through tight collaboration. Specifically, in Uni-LAP, the SCM is enhanced with a novel Top-K loss function to generate accurate candidate articles, while the LLM employs syllogism-inspired reasoning to refine the final predictions. We evaluated Uni-LAP on datasets from multiple jurisdictions, and empirical results demonstrate that our approach consistently outperforms existing baselines, showcasing its effectiveness and generalizability.
Abstract:Fish-inspired aquatic robots are gaining increasing attention in research communities due to their high swimming speeds and efficient propulsion enabled by flexible bodies that generate undulatory motions. To support the design optimizations and control of such systems, accurate, interpretable, and computationally tractable modeling of the underlying swimming dynamics is indispensable. In this letter, we present a full-body dynamics model for fish swimming, rigorously derived from Hamilton's principle. The model captures the continuously distributed elasticity of a deformable fish body undergoing large deformations and incorporates fluid-structure coupling effects, enabling self-propelled motion without prescribing kinematics. A preliminary parameter study explores the influence of actuation frequency and body stiffness on swimming speed and cost of transport (COT). Simulation results indicate that swimming speed and energy efficiency exhibit opposing trends with tail-beat frequency and that both body stiffness and body length have distinct optimal values. These findings provide insights into biological swimming mechanisms and inform the design of high-performance soft robotic swimmers.
Abstract:Ultrasound imaging has become the preferred imaging modality for early cancer screening due to its advantages of non-ionizing radiation, low cost, and real-time imaging capabilities. However, conventional ultrasound diagnosis heavily relies on physician expertise, presenting challenges of high subjectivity and low diagnostic efficiency. Vision-language models (VLMs) offer promising solutions for this issue, but existing general-purpose models demonstrate limited knowledge in ultrasound medical tasks, with poor generalization in multi-organ lesion recognition and low efficiency across multi-task diagnostics. To address these limitations, we propose EchoVLM, a vision-language model specifically designed for ultrasound medical imaging. The model employs a Mixture of Experts (MoE) architecture trained on data spanning seven anatomical regions. This design enables the model to perform multiple tasks, including ultrasound report generation, diagnosis and visual question-answering (VQA). The experimental results demonstrated that EchoVLM achieved significant improvements of 10.15 and 4.77 points in BLEU-1 scores and ROUGE-1 scores respectively compared to Qwen2-VL on the ultrasound report generation task. These findings suggest that EchoVLM has substantial potential to enhance diagnostic accuracy in ultrasound imaging, thereby providing a viable technical solution for future clinical applications. Source code and model weights are available at https://github.com/Asunatan/EchoVLM.
Abstract:Existing work has shown that o1-level performance can be achieved with limited data distillation, but most existing methods focus on unidirectional supervised fine-tuning (SFT), overlooking the intricate interplay between diverse reasoning patterns. In this paper, we construct r1k, a high-quality reverse reasoning dataset derived by inverting 1,000 forward examples from s1k, and examine how SFT and Direct Preference Optimization (DPO) affect alignment under bidirectional reasoning objectives. SFT on r1k yields a 1.6%--6.8% accuracy improvement over s1k across evaluated benchmarks. However, naively mixing forward and reverse data during SFT weakens the directional distinction. Although DPO can partially recover this distinction, it also suppresses less preferred reasoning paths by shifting the probability mass toward irrelevant outputs. These findings suggest that mixed reasoning data introduce conflicting supervision signals, underscoring the need for robust and direction-aware alignment strategies.
Abstract:The proliferation of multimedia content necessitates the development of effective Multimedia Event Extraction (M2E2) systems. Though Large Vision-Language Models (LVLMs) have shown strong cross-modal capabilities, their utility in the M2E2 task remains underexplored. In this paper, we present the first systematic evaluation of representative LVLMs, including DeepSeek-VL2 and the Qwen-VL series, on the M2E2 dataset. Our evaluations cover text-only, image-only, and cross-media subtasks, assessed under both few-shot prompting and fine-tuning settings. Our key findings highlight the following valuable insights: (1) Few-shot LVLMs perform notably better on visual tasks but struggle significantly with textual tasks; (2) Fine-tuning LVLMs with LoRA substantially enhances model performance; and (3) LVLMs exhibit strong synergy when combining modalities, achieving superior performance in cross-modal settings. We further provide a detailed error analysis to reveal persistent challenges in areas such as semantic precision, localization, and cross-modal grounding, which remain critical obstacles for advancing M2E2 capabilities.
Abstract:Micro Autonomous Surface Vehicles (MicroASVs) offer significant potential for operations in confined or shallow waters and swarm robotics applications. However, achieving precise and robust control at such small scales remains highly challenging, mainly due to the complexity of modeling nonlinear hydrodynamic forces and the increased sensitivity to self-motion effects and environmental disturbances, including waves and boundary effects in confined spaces. This paper presents a physics-driven dynamics model for an over-actuated MicroASV and introduces a data-driven optimal control framework that leverages a weak formulation-based online model learning method. Our approach continuously refines the physics-driven model in real time, enabling adaptive control that adjusts to changing system parameters. Simulation results demonstrate that the proposed method substantially enhances trajectory tracking accuracy and robustness, even under unknown payloads and external disturbances. These findings highlight the potential of data-driven online learning-based optimal control to improve MicroASV performance, paving the way for more reliable and precise autonomous surface vehicle operations.
Abstract:Anomaly detection, which aims to identify anomalies deviating from normal patterns, is challenging due to the limited amount of normal data available. Unlike most existing unified methods that rely on carefully designed image feature extractors and memory banks to capture logical relationships between objects, we introduce a text memory bank to enhance the detection of logical anomalies. Specifically, we propose a Three-Memory framework for Unified structural and logical Anomaly Detection (TMUAD). First, we build a class-level text memory bank for logical anomaly detection by the proposed logic-aware text extractor, which can capture rich logical descriptions of objects from input images. Second, we construct an object-level image memory bank that preserves complete object contours by extracting features from segmented objects. Third, we employ visual encoders to extract patch-level image features for constructing a patch-level memory bank for structural anomaly detection. These three complementary memory banks are used to retrieve and compare normal images that are most similar to the query image, compute anomaly scores at multiple levels, and fuse them into a final anomaly score. By unifying structural and logical anomaly detection through collaborative memory banks, TMUAD achieves state-of-the-art performance across seven publicly available datasets involving industrial and medical domains. The model and code are available at https://github.com/SIA-IDE/TMUAD.
Abstract:The Mixture of Experts (MoE) architecture has emerged as a key technique for scaling Large Language Models by activating only a subset of experts per query. Deploying MoE on consumer-grade edge hardware, however, is constrained by limited device memory, making dynamic expert offloading essential. Unlike prior work that treats offloading purely as a scheduling problem, we leverage expert importance to guide decisions, substituting low-importance activated experts with functionally similar ones already cached in GPU memory, thereby preserving accuracy. As a result, this design reduces memory usage and data transfer, while largely eliminating PCIe overhead. In addition, we introduce a scheduling policy that maximizes the reuse ratio of GPU-cached experts, further boosting efficiency. Extensive evaluations show that our approach delivers 48% lower decoding latency with over 60% expert cache hit rate, while maintaining nearly lossless accuracy.
Abstract:Text-to-image (T2I) diffusion models have made significant strides in generating high-quality images. However, progressively manipulating certain attributes of generated images to meet the desired user expectations remains challenging, particularly for content with rich details, such as human faces. Some studies have attempted to address this by training slider modules. However, they follow a One-for-One manner, where an independent slider is trained for each attribute, requiring additional training whenever a new attribute is introduced. This not only results in parameter redundancy accumulated by sliders but also restricts the flexibility of practical applications and the scalability of attribute manipulation. To address this issue, we introduce the All-in-One Slider, a lightweight module that decomposes the text embedding space into sparse, semantically meaningful attribute directions. Once trained, it functions as a general-purpose slider, enabling interpretable and fine-grained continuous control over various attributes. Moreover, by recombining the learned directions, the All-in-One Slider supports zero-shot manipulation of unseen attributes (e.g., races and celebrities) and the composition of multiple attributes. Extensive experiments demonstrate that our method enables accurate and scalable attribute manipulation, achieving notable improvements compared to previous methods. Furthermore, our method can be extended to integrate with the inversion framework to perform attribute manipulation on real images, broadening its applicability to various real-world scenarios. The code and trained model will be released at: https://github.com/ywxsuperstar/KSAE-FaceSteer.
Abstract:Text-to-image (T2I) generation has greatly enhanced creative expression, yet achieving preference-aligned generation in a real-time and training-free manner remains challenging. Previous methods often rely on static, pre-collected preferences or fine-tuning, limiting adaptability to evolving and nuanced user intents. In this paper, we highlight the need for instant preference-aligned T2I generation and propose a training-free framework grounded in multimodal large language model (MLLM) priors. Our framework decouples the task into two components: preference understanding and preference-guided generation. For preference understanding, we leverage MLLMs to automatically extract global preference signals from a reference image and enrich a given prompt using structured instruction design. Our approach supports broader and more fine-grained coverage of user preferences than existing methods. For preference-guided generation, we integrate global keyword-based control and local region-aware cross-attention modulation to steer the diffusion model without additional training, enabling precise alignment across both global attributes and local elements. The entire framework supports multi-round interactive refinement, facilitating real-time and context-aware image generation. Extensive experiments on the Viper dataset and our collected benchmark demonstrate that our method outperforms prior approaches in both quantitative metrics and human evaluations, and opens up new possibilities for dialog-based generation and MLLM-diffusion integration.