School of Information and Communication Engineering, Xidian University, Xi'an, China
Abstract:Parkinson's disease (PD) shows heterogeneous, evolving brain-morphometry patterns. Modeling these longitudinal trajectories enables mechanistic insight, treatment development, and individualized 'digital-twin' forecasting. However, existing methods usually adopt recurrent neural networks and transformer architectures, which rely on discrete, regularly sampled data while struggling to handle irregular and sparse magnetic resonance imaging (MRI) in PD cohorts. Moreover, these methods have difficulty capturing individual heterogeneity including variations in disease onset, progression rate, and symptom severity, which is a hallmark of PD. To address these challenges, we propose CNODE (Conditional Neural ODE), a novel framework for continuous, individualized PD progression forecasting. The core of CNODE is to model morphological brain changes as continuous temporal processes using a neural ODE model. In addition, we jointly learn patient-specific initial time and progress speed to align individual trajectories into a shared progression trajectory. We validate CNODE on the Parkinson's Progression Markers Initiative (PPMI) dataset. Experimental results show that our method outperforms state-of-the-art baselines in forecasting longitudinal PD progression.
Abstract:A central architectural question for both biological and artificial intelligence is whether judgment relies on specialized modules or a unified, domain-general resource. While the discovery of decodable neural representations for distinct concepts in Large Language Models (LLMs) has suggested a modular architecture, whether these representations are truly independent systems remains an open question. Here we provide evidence for a convergent architecture. Across a range of LLMs, we find that diverse evaluative judgments are computed along a dominant dimension, which we term the Valence-Assent Axis (VAA). This axis jointly encodes subjective valence ("what is good") and the model's assent to factual claims ("what is true"). Through direct interventions, we show this unified representation creates a critical dependency: the VAA functions as a control signal that steers the generative process to construct a rationale consistent with its evaluative state, even at the cost of factual accuracy. This mechanism, which we term the subordination of reasoning, shifts the process of reasoning from impartial inference toward goal-directed justification. Our discovery offers a mechanistic account for systemic bias and hallucination, revealing how an architecture that promotes coherent judgment can systematically undermine faithful reasoning.
Abstract:Large Language Models (LLMs) often struggle with problems that require multi-step reasoning. For small-scale open-source models, Reinforcement Learning with Verifiable Rewards (RLVR) fails when correct solutions are rarely sampled even after many attempts, while Supervised Fine-Tuning (SFT) tends to overfit long demonstrations through rigid token-by-token imitation. To address this gap, we propose Supervised Reinforcement Learning (SRL), a framework that reformulates problem solving as generating a sequence of logical "actions". SRL trains the model to generate an internal reasoning monologue before committing to each action. It provides smoother rewards based on the similarity between the model's actions and expert actions extracted from the SFT dataset in a step-wise manner. This supervision offers richer learning signals even when all rollouts are incorrect, while encouraging flexible reasoning guided by expert demonstrations. As a result, SRL enables small models to learn challenging problems previously unlearnable by SFT or RLVR. Moreover, initializing training with SRL before refining with RLVR yields the strongest overall performance. Beyond reasoning benchmarks, SRL generalizes effectively to agentic software engineering tasks, establishing it as a robust and versatile training framework for reasoning-oriented LLMs.
Abstract:Radio frequency (RF) fingerprinting techniques provide a promising supplement to cryptography-based approaches but rely on dedicated equipment to capture in-phase and quadrature (IQ) samples, hindering their wide adoption. Recent advances advocate easily obtainable channel state information (CSI) by commercial WiFi devices for lightweight RF fingerprinting, while falling short in addressing the challenges of coarse granularity of CSI measurements in an open-world setting. In this paper, we propose CSI2Q, a novel CSI fingerprinting system that achieves comparable performance to IQ-based approaches. Instead of extracting fingerprints directly from raw CSI measurements, CSI2Q first transforms frequency-domain CSI measurements into time-domain signals that share the same feature space with IQ samples. Then, we employ a deep auxiliary learning strategy to transfer useful knowledge from an IQ fingerprinting model to the CSI counterpart. Finally, the trained CSI model is combined with an OpenMax function to estimate the likelihood of unknown ones. We evaluate CSI2Q on one synthetic CSI dataset involving 85 devices and two real CSI datasets, including 10 and 25 WiFi routers, respectively. Our system achieves accuracy increases of at least 16% on the synthetic CSI dataset, 20% on the in-lab CSI dataset, and 17% on the in-the-wild CSI dataset.
Abstract:Instruction tuning is crucial for aligning Large Language Models (LLMs), yet the quality of instruction-following data varies significantly. While high-quality data is paramount, it is often scarce; conversely, abundant low-quality data is frequently discarded, leading to substantial information loss. Existing data augmentation methods struggle to augment this low-quality data effectively, and the evaluation of such techniques remains poorly defined. To address this, we formally define the task of Instruction Distillation: distilling multiple low-quality and redundant inputs into high-quality and coherent instruction-output pairs. Specifically, we introduce a comprehensive data construction pipeline to create MIXTURE, a 144K-sample dataset pairing low-quality or semantically redundant imperfect instruction clusters with their high-quality distillations. We then introduce LM-Mixup, by first performing supervised fine-tuning on MIXTURE and then optimizing it with reinforcement learning. This process uses three complementary reward signals: quality, semantic alignment, and format compliance, via Group Relative Policy Optimization (GRPO). We demonstrate that LM-Mixup effectively augments imperfect datasets: fine-tuning LLMs on its distilled data, which accounts for only about 3% of the entire dataset, not only surpasses full-dataset training but also competes with state-of-the-art high-quality data selection methods across multiple benchmarks. Our work establishes that low-quality data is a valuable resource when properly distilled and augmented with LM-Mixup, significantly enhancing the efficiency and performance of instruction-tuned LLMs.
Abstract:The efficiency of multi-agent systems driven by large language models (LLMs) largely hinges on their communication topology. However, designing an optimal topology is a non-trivial challenge, as it requires balancing competing objectives such as task performance, communication cost, and robustness. Existing frameworks often rely on static or hand-crafted topologies, which inherently fail to adapt to diverse task requirements, leading to either excessive token consumption for simple problems or performance bottlenecks for complex ones. To address this challenge, we introduce a novel generative framework called \textit{Guided Topology Diffusion (GTD)}. Inspired by conditional discrete graph diffusion models, GTD formulates topology synthesis as an iterative construction process. At each step, the generation is steered by a lightweight proxy model that predicts multi-objective rewards (e.g., accuracy, utility, cost), enabling real-time, gradient-free optimization towards task-adaptive topologies. This iterative, guided synthesis process distinguishes GTD from single-step generative frameworks, enabling it to better navigate complex design trade-offs. We validated GTD across multiple benchmarks, and experiments show that this framework can generate highly task-adaptive, sparse, and efficient communication topologies, significantly outperforming existing methods in LLM agent collaboration.
Abstract:Autoformalization addresses the scarcity of data for Automated Theorem Proving (ATP) by translating mathematical problems from natural language into formal statements. Efforts in recent work shift from directly prompting large language models to training an end-to-end formalizer model from scratch, achieving remarkable advancements. However, existing formalizer still struggles to consistently generate valid statements that meet syntactic validity and semantic consistency. To address this issue, we propose the Autoformalizer with Tool Feedback (ATF), a novel approach that incorporates syntactic and consistency information as tools into the formalization process. By integrating Lean 4 compilers for syntax corrections and employing a multi-LLMs-as-judge approach for consistency validation, the model is able to adaptively refine generated statements according to the tool feedback, enhancing both syntactic validity and semantic consistency. The training of ATF involves a cold-start phase on synthetic tool-calling data, an expert iteration phase to improve formalization capabilities, and Direct Preference Optimization to alleviate ineffective revisions. Experimental results show that ATF markedly outperforms a range of baseline formalizer models, with its superior performance further validated by human evaluations. Subsequent analysis reveals that ATF demonstrates excellent inference scaling properties. Moreover, we open-source Numina-ATF, a dataset containing 750K synthetic formal statements to facilitate advancements in autoformalization and ATP research.
Abstract:The realizable-to-agnostic transformation (Beimel et al., 2015; Alon et al., 2020) provides a general mechanism to convert a private learner in the realizable setting (where the examples are labeled by some function in the concept class) to a private learner in the agnostic setting (where no assumptions are imposed on the data). Specifically, for any concept class $\mathcal{C}$ and error parameter $\alpha$, a private realizable learner for $\mathcal{C}$ can be transformed into a private agnostic learner while only increasing the sample complexity by $\widetilde{O}(\mathrm{VC}(\mathcal{C})/\alpha^2)$, which is essentially tight assuming a constant privacy parameter $\varepsilon = \Theta(1)$. However, when $\varepsilon$ can be arbitrary, one has to apply the standard privacy-amplification-by-subsampling technique (Kasiviswanathan et al., 2011), resulting in a suboptimal extra sample complexity of $\widetilde{O}(\mathrm{VC}(\mathcal{C})/\alpha^2\varepsilon)$ that involves a $1/\varepsilon$ factor. In this work, we give an improved construction that eliminates the dependence on $\varepsilon$, thereby achieving a near-optimal extra sample complexity of $\widetilde{O}(\mathrm{VC}(\mathcal{C})/\alpha^2)$ for any $\varepsilon\le 1$. Moreover, our result reveals that in private agnostic learning, the privacy cost is only significant for the realizable part. We also leverage our technique to obtain a nearly tight sample complexity bound for the private prediction problem, resolving an open question posed by Dwork and Feldman (2018) and Dagan and Feldman (2020).
Abstract:Safe motion planning is essential for autonomous vessel operations, especially in challenging spaces such as narrow inland waterways. However, conventional motion planning approaches are often computationally intensive or overly conservative. This paper proposes a safe motion planning strategy combining Model Predictive Control (MPC) and Control Barrier Functions (CBFs). We introduce a time-varying inflated ellipse obstacle representation, where the inflation radius is adjusted depending on the relative position and attitude between the vessel and the obstacle. The proposed adaptive inflation reduces the conservativeness of the controller compared to traditional fixed-ellipsoid obstacle formulations. The MPC solution provides an approximate motion plan, and high-order CBFs ensure the vessel's safety using the varying inflation radius. Simulation and real-world experiments demonstrate that the proposed strategy enables the fully-actuated autonomous robot vessel to navigate through narrow spaces in real time and resolve potential deadlocks, all while ensuring safety.
Abstract:We revisit the problem of private online learning, in which a learner receives a sequence of $T$ data points and has to respond at each time-step a hypothesis. It is required that the entire stream of output hypotheses should satisfy differential privacy. Prior work of Golowich and Livni [2021] established that every concept class $\mathcal{H}$ with finite Littlestone dimension $d$ is privately online learnable in the realizable setting. In particular, they proposed an algorithm that achieves an $O_{d}(\log T)$ mistake bound against an oblivious adversary. However, their approach yields a suboptimal $\tilde{O}_{d}(\sqrt{T})$ bound against an adaptive adversary. In this work, we present a new algorithm with a mistake bound of $O_{d}(\log T)$ against an adaptive adversary, closing this gap. We further investigate the problem in the agnostic setting, which is more general than the realizable setting as it does not impose any assumptions on the data. We give an algorithm that obtains a sublinear regret of $\tilde{O}_d(\sqrt{T})$ for generic Littlestone classes, demonstrating that they are also privately online learnable in the agnostic setting.