Univ. California, Santa Barbara
Abstract:The success of Large Language Models (LLMs) hinges on the stable training of deep Transformer architectures. A critical design choice is the placement of normalization layers, leading to a fundamental trade-off: the ``PreNorm'' architecture ensures training stability at the cost of potential performance degradation in deep models, while the ``PostNorm'' architecture offers strong performance but suffers from severe training instability. In this work, we propose SpanNorm, a novel technique designed to resolve this dilemma by integrating the strengths of both paradigms. Structurally, SpanNorm establishes a clean residual connection that spans the entire transformer block to stabilize signal propagation, while employing a PostNorm-style computation that normalizes the aggregated output to enhance model performance. We provide a theoretical analysis demonstrating that SpanNorm, combined with a principled scaling strategy, maintains bounded signal variance throughout the network, preventing the gradient issues that plague PostNorm models, and also alleviating the representation collapse of PreNorm. Empirically, SpanNorm consistently outperforms standard normalization schemes in both dense and Mixture-of-Experts (MoE) scenarios, paving the way for more powerful and stable Transformer architectures.
Abstract:In this work, we propose Causal Autoregressive Diffusion (CARD), a novel framework that unifies the training efficiency of ARMs with the high-throughput inference of diffusion models. CARD reformulates the diffusion process within a strictly causal attention mask, enabling dense, per-token supervision in a single forward pass. To address the optimization instability of causal diffusion, we introduce a soft-tailed masking schema to preserve local context and a context-aware reweighting mechanism derived from signal-to-noise principles. This design enables dynamic parallel decoding, where the model leverages KV-caching to adaptively generate variable-length token sequences based on confidence. Empirically, CARD outperforms existing discrete diffusion baselines while reducing training latency by 3 $\times$ compared to block diffusion methods. Our results demonstrate that CARD achieves ARM-level data efficiency while unlocking the latency benefits of parallel generation, establishing a robust paradigm for next-generation efficient LLMs.
Abstract:Reasoning-oriented Large Language Models (LLMs) have achieved remarkable progress with Chain-of-Thought (CoT) prompting, yet they remain fundamentally limited by a \emph{blind self-thinking} paradigm: performing extensive internal reasoning even when critical information is missing or ambiguous. We propose Proactive Interactive Reasoning (PIR), a new reasoning paradigm that transforms LLMs from passive solvers into proactive inquirers that interleave reasoning with clarification. Unlike existing search- or tool-based frameworks that primarily address knowledge uncertainty by querying external environments, PIR targets premise- and intent-level uncertainty through direct interaction with the user. PIR is implemented via two core components: (1) an uncertainty-aware supervised fine-tuning procedure that equips models with interactive reasoning capability, and (2) a user-simulator-based policy optimization framework driven by a composite reward that aligns model behavior with user intent. Extensive experiments on mathematical reasoning, code generation, and document editing demonstrate that PIR consistently outperforms strong baselines, achieving up to 32.70\% higher accuracy, 22.90\% higher pass rate, and 41.36 BLEU improvement, while reducing nearly half of the reasoning computation and unnecessary interaction turns. Further reliability evaluations on factual knowledge, question answering, and missing-premise scenarios confirm the strong generalization and robustness of PIR. Model and code are publicly available at: \href{https://github.com/SUAT-AIRI/Proactive-Interactive-R1}
Abstract:Neighborhood search operators are critical to the performance of Multi-Objective Evolutionary Algorithms (MOEAs) and rely heavily on expert design. Although recent LLM-based Automated Heuristic Design (AHD) methods have made notable progress, they primarily optimize individual heuristics or components independently, lacking explicit exploration and exploitation of dynamic coupling relationships between multiple operators. In this paper, multi-operator optimization in MOEAs is formulated as a Markov decision process, enabling the improvement of interdependent operators through sequential decision-making. To address this, we propose the Evolution of Operator Combination (E2OC) framework for MOEAs, which achieves the co-evolution of design strategies and executable codes. E2OC employs Monte Carlo Tree Search to progressively search combinations of operator design strategies and adopts an operator rotation mechanism to identify effective operator configurations while supporting the integration of mainstream AHD methods as the underlying designer. Experimental results across AHD tasks with varying objectives and problem scales show that E2OC consistently outperforms state-of-the-art AHD and other multi-heuristic co-design frameworks, demonstrating strong generalization and sustained optimization capability.
Abstract:We introduce LongCat-Flash-Thinking-2601, a 560-billion-parameter open-source Mixture-of-Experts (MoE) reasoning model with superior agentic reasoning capability. LongCat-Flash-Thinking-2601 achieves state-of-the-art performance among open-source models on a wide range of agentic benchmarks, including agentic search, agentic tool use, and tool-integrated reasoning. Beyond benchmark performance, the model demonstrates strong generalization to complex tool interactions and robust behavior under noisy real-world environments. Its advanced capability stems from a unified training framework that combines domain-parallel expert training with subsequent fusion, together with an end-to-end co-design of data construction, environments, algorithms, and infrastructure spanning from pre-training to post-training. In particular, the model's strong generalization capability in complex tool-use are driven by our in-depth exploration of environment scaling and principled task construction. To optimize long-tailed, skewed generation and multi-turn agentic interactions, and to enable stable training across over 10,000 environments spanning more than 20 domains, we systematically extend our asynchronous reinforcement learning framework, DORA, for stable and efficient large-scale multi-environment training. Furthermore, recognizing that real-world tasks are inherently noisy, we conduct a systematic analysis and decomposition of real-world noise patterns, and design targeted training procedures to explicitly incorporate such imperfections into the training process, resulting in improved robustness for real-world applications. To further enhance performance on complex reasoning tasks, we introduce a Heavy Thinking mode that enables effective test-time scaling by jointly expanding reasoning depth and width through intensive parallel thinking.
Abstract:Longitudinal information in radiology reports refers to the sequential tracking of findings across multiple examinations over time, which is crucial for monitoring disease progression and guiding clinical decisions. Many recent automated radiology report generation methods are designed to capture longitudinal information; however, validating their performance is challenging. There is no proper tool to consistently label temporal changes in both ground-truth and model-generated texts for meaningful comparisons. Existing annotation methods are typically labor-intensive, relying on the use of manual lexicons and rules. Complex rules are closed-source, domain specific and hard to adapt, whereas overly simple ones tend to miss essential specialised information. Large language models (LLMs) offer a promising annotation alternative, as they are capable of capturing nuanced linguistic patterns and semantic similarities without extensive manual intervention. They also adapt well to new contexts. In this study, we therefore propose an LLM-based pipeline to automatically annotate longitudinal information in radiology reports. The pipeline first identifies sentences containing relevant information and then extracts the progression of diseases. We evaluate and compare five mainstream LLMs on these two tasks using 500 manually annotated reports. Considering both efficiency and performance, Qwen2.5-32B was subsequently selected and used to annotate another 95,169 reports from the public MIMIC-CXR dataset. Our Qwen2.5-32B-annotated dataset provided us with a standardized benchmark for evaluating report generation models. Using this new benchmark, we assessed seven state-of-the-art report generation models. Our LLM-based annotation method outperforms existing annotation solutions, achieving 11.3\% and 5.3\% higher F1-scores for longitudinal information detection and disease tracking, respectively.
Abstract:Existing video frame interpolation (VFI) methods often adopt a frame-centric approach, processing videos as independent short segments (e.g., triplets), which leads to temporal inconsistencies and motion artifacts. To overcome this, we propose a holistic, video-centric paradigm named \textbf{L}ocal \textbf{D}iffusion \textbf{F}orcing for \textbf{V}ideo \textbf{F}rame \textbf{I}nterpolation (LDF-VFI). Our framework is built upon an auto-regressive diffusion transformer that models the entire video sequence to ensure long-range temporal coherence. To mitigate error accumulation inherent in auto-regressive generation, we introduce a novel skip-concatenate sampling strategy that effectively maintains temporal stability. Furthermore, LDF-VFI incorporates sparse, local attention and tiled VAE encoding, a combination that not only enables efficient processing of long sequences but also allows generalization to arbitrary spatial resolutions (e.g., 4K) at inference without retraining. An enhanced conditional VAE decoder, which leverages multi-scale features from the input video, further improves reconstruction fidelity. Empirically, LDF-VFI achieves state-of-the-art performance on challenging long-sequence benchmarks, demonstrating superior per-frame quality and temporal consistency, especially in scenes with large motion. The source code is available at https://github.com/xypeng9903/LDF-VFI.
Abstract:RL-based agentic search enables LLMs to solve complex questions via dynamic planning and external search. While this approach significantly enhances accuracy with agent policies optimized via large-scale reinforcement learning, we identify a critical gap in reliability: these agents fail to recognize their reasoning boundaries and rarely admit ``I DON'T KNOW'' (IDK) even when evidence is insufficient or reasoning reaches its limit. The lack of reliability often leads to plausible but unreliable answers, introducing significant risks in many real-world scenarios. To this end, we propose Boundary-Aware Policy Optimization (BAPO), a novel RL framework designed to cultivate reliable boundary awareness without compromising accuracy. BAPO introduces two key components: (i) a group-based boundary-aware reward that encourages an IDK response only when the reasoning reaches its limit, and (ii) an adaptive reward modulator that strategically suspends this reward during early exploration, preventing the model from exploiting IDK as a shortcut. Extensive experiments on four benchmarks demonstrate that BAPO substantially enhances the overall reliability of agentic search.
Abstract:Interactive humanoid video generation aims to synthesize lifelike visual agents that can engage with humans through continuous and responsive video. Despite recent advances in video synthesis, existing methods often grapple with the trade-off between high-fidelity synthesis and real-time interaction requirements. In this paper, we propose FlowAct-R1, a framework specifically designed for real-time interactive humanoid video generation. Built upon a MMDiT architecture, FlowAct-R1 enables the streaming synthesis of video with arbitrary durations while maintaining low-latency responsiveness. We introduce a chunkwise diffusion forcing strategy, complemented by a novel self-forcing variant, to alleviate error accumulation and ensure long-term temporal consistency during continuous interaction. By leveraging efficient distillation and system-level optimizations, our framework achieves a stable 25fps at 480p resolution with a time-to-first-frame (TTFF) of only around 1.5 seconds. The proposed method provides holistic and fine-grained full-body control, enabling the agent to transition naturally between diverse behavioral states in interactive scenarios. Experimental results demonstrate that FlowAct-R1 achieves exceptional behavioral vividness and perceptual realism, while maintaining robust generalization across diverse character styles.
Abstract:In this paper, we present a new dynamic collaborative network for semi-supervised 3D vessel segmentation, termed DiCo. Conventional mean teacher (MT) methods typically employ a static approach, where the roles of the teacher and student models are fixed. However, due to the complexity of 3D vessel data, the teacher model may not always outperform the student model, leading to cognitive biases that can limit performance. To address this issue, we propose a dynamic collaborative network that allows the two models to dynamically switch their teacher-student roles. Additionally, we introduce a multi-view integration module to capture various perspectives of the inputs, mirroring the way doctors conduct medical analysis. We also incorporate adversarial supervision to constrain the shape of the segmented vessels in unlabeled data. In this process, the 3D volume is projected into 2D views to mitigate the impact of label inconsistencies. Experiments demonstrate that our DiCo method sets new state-of-the-art performance on three 3D vessel segmentation benchmarks. The code repository address is https://github.com/xujiaommcome/DiCo