Beijing University of Technology
Abstract:Neural architecture search (NAS) automates neural network design, improving efficiency over manual approaches. However, efficiently discovering high-performance neural network architectures that simultaneously optimize multiple objectives remains a significant challenge in NAS. Existing methods often suffer from limited population diversity and inadequate exploration of the search space, particularly in regions with extreme complexity values. To address these challenges, we propose MOEA-BUS, an innovative multi-objective evolutionary algorithm based on bi-population with uniform sampling for neural architecture search, aimed at simultaneously optimizing both accuracy and network complexity. In MOEA-BUS, a novel uniform sampling method is proposed to initialize the population, ensuring that architectures are distributed uniformly across the objective space. Furthermore, to enhance exploration, we deploy a bi-population framework where two populations evolve synergistically, facilitating comprehensive search space coverage. Experiments on CIFAR-10 and ImageNet demonstrate MOEA-BUS's superiority, achieving top-1 accuracies of 98.39% on CIFAR-10, and 80.03% on ImageNet. Notably, it achieves 78.28% accuracy on ImageNet with only 446M MAdds. Ablation studies confirm that both uniform sampling and bi-population mechanisms enhance population diversity and performance. Additionally, in terms of the Kendall's tau coefficient, the SVM achieves an improvement of at least 0.035 compared to the other three commonly used machine learning models, and uniform sampling provided an enhancement of approximately 0.07.
Abstract:Adaptive learning systems optimize content delivery based on performance metrics but ignore the dynamic attention fluctuations that characterize neurodivergent learners. We present AttentionGuard, a framework that detects engagement-attention states from privacy-preserving behavioral signals and adapts interface elements accordingly. Our approach models four attention states derived from ADHD phenomenology and implements five novel UI adaptation patterns including bi-directional scaffolding that responds to both understimulation and overstimulation. We validate our detection model on the OULAD dataset, achieving 87.3% classification accuracy, and demonstrate correlation with clinical ADHD profiles through cross-validation on the HYPERAKTIV dataset. A Wizard-of-Oz study with 11 adults showing ADHD characteristics found significantly reduced cognitive load in the adaptive condition (NASA-TLX: 47.2 vs 62.8, Cohen's d=1.21, p=0.008) and improved comprehension (78.4% vs 61.2%, p=0.009). Concordance analysis showed 84% agreement between wizard decisions and automated classifier predictions, supporting deployment feasibility. The system is presented as an interactive demo where observers can inspect detected attention states, observe real-time UI adaptations, and compare automated decisions with human-in-the-loop overrides. We contribute empirically validated UI patterns for attention-adaptive interfaces and evidence that behavioral attention detection can meaningfully support neurodivergent learning experiences.
Abstract:In this report, we introduce ERNIE 5.0, a natively autoregressive foundation model desinged for unified multimodal understanding and generation across text, image, video, and audio. All modalities are trained from scratch under a unified next-group-of-tokens prediction objective, based on an ultra-sparse mixture-of-experts (MoE) architecture with modality-agnostic expert routing. To address practical challenges in large-scale deployment under diverse resource constraints, ERNIE 5.0 adopts a novel elastic training paradigm. Within a single pre-training run, the model learns a family of sub-models with varying depths, expert capacities, and routing sparsity, enabling flexible trade-offs among performance, model size, and inference latency in memory- or time-constrained scenarios. Moreover, we systematically address the challenges of scaling reinforcement learning to unified foundation models, thereby guaranteeing efficient and stable post-training under ultra-sparse MoE architectures and diverse multimodal settings. Extensive experiments demonstrate that ERNIE 5.0 achieves strong and balanced performance across multiple modalities. To the best of our knowledge, among publicly disclosed models, ERNIE 5.0 represents the first production-scale realization of a trillion-parameter unified autoregressive model that supports both multimodal understanding and generation. To facilitate further research, we present detailed visualizations of modality-agnostic expert routing in the unified model, alongside comprehensive empirical analysis of elastic training, aiming to offer profound insights to the community.
Abstract:Urban traffic management demands systems that simultaneously predict future conditions, detect anomalies, and take safe corrective actions -- all while providing reliability guarantees. We present STREAM-RL, a unified framework that introduces three novel algorithmic contributions: (1) PU-GAT+, an Uncertainty-Guided Adaptive Conformal Forecaster that uses prediction uncertainty to dynamically reweight graph attention via confidence-monotonic attention, achieving distribution-free coverage guarantees; (2) CRFN-BY, a Conformal Residual Flow Network that models uncertainty-normalized residuals via normalizing flows with Benjamini-Yekutieli FDR control under arbitrary dependence; and (3) LyCon-WRL+, an Uncertainty-Guided Safe World-Model RL agent with Lyapunov stability certificates, certified Lipschitz bounds, and uncertainty-propagated imagination rollouts. To our knowledge, this is the first framework to propagate calibrated uncertainty from forecasting through anomaly detection to safe policy learning with end-to-end theoretical guarantees. Experiments on multiple real-world traffic trajectory data demonstrate that STREAM-RL achieves 91.4\% coverage efficiency, controls FDR at 4.1\% under verified dependence, and improves safety rate to 95.2\% compared to 69\% for standard PPO while achieving higher reward, with 23ms end-to-end inference latency.
Abstract:We propose Infinite-World, a robust interactive world model capable of maintaining coherent visual memory over 1000+ frames in complex real-world environments. While existing world models can be efficiently optimized on synthetic data with perfect ground-truth, they lack an effective training paradigm for real-world videos due to noisy pose estimations and the scarcity of viewpoint revisits. To bridge this gap, we first introduce a Hierarchical Pose-free Memory Compressor (HPMC) that recursively distills historical latents into a fixed-budget representation. By jointly optimizing the compressor with the generative backbone, HPMC enables the model to autonomously anchor generations in the distant past with bounded computational cost, eliminating the need for explicit geometric priors. Second, we propose an Uncertainty-aware Action Labeling module that discretizes continuous motion into a tri-state logic. This strategy maximizes the utilization of raw video data while shielding the deterministic action space from being corrupted by noisy trajectories, ensuring robust action-response learning. Furthermore, guided by insights from a pilot toy study, we employ a Revisit-Dense Finetuning Strategy using a compact, 30-minute dataset to efficiently activate the model's long-range loop-closure capabilities. Extensive experiments, including objective metrics and user studies, demonstrate that Infinite-World achieves superior performance in visual quality, action controllability, and spatial consistency.
Abstract:With the remarkable success of large language models (LLMs) in natural language understanding and generation, multimodal large language models (MLLMs) have rapidly advanced in their ability to process data across multiple modalities. While most existing efforts focus on scaling up language models or constructing higher-quality training data, limited attention has been paid to effectively integrating cross-modal knowledge into the language space. In vision-language models, for instance, aligning modalities using only high-level visual features often discards the rich semantic information present in mid- and low-level features, limiting the model's ability of cross-modality understanding. To address this issue, we propose SparseCut, a general cross-modal fusion architecture for MLLMs, introducing sparse shortcut connections between the cross-modal encoder and the LLM. These shortcut connections enable the efficient and hierarchical integration of visual features at multiple levels, facilitating richer semantic fusion without increasing computational overhead. We further introduce an efficient multi-grained feature fusion module, which performs the fusion of visual features before routing them through the shortcuts. This preserves the original language context and does not increase the overall input length, thereby avoiding an increase in computational complexity for the LLM. Experiments demonstrate that SparseCut significantly enhances the performance of MLLMs across various multimodal benchmarks with generality and scalability for different base LLMs.
Abstract:Large language models (LLMs) are widely used as reference-free evaluators via prompting, but this "LLM-as-a-Judge" paradigm is costly, opaque, and sensitive to prompt design. In this work, we investigate whether smaller models can serve as efficient evaluators by leveraging internal representations instead of surface generation. We uncover a consistent empirical pattern: small LMs, despite with weak generative ability, encode rich evaluative signals in their hidden states. This motivates us to propose the Semantic Capacity Asymmetry Hypothesis: evaluation requires significantly less semantic capacity than generation and can be grounded in intermediate representations, suggesting that evaluation does not necessarily need to rely on large-scale generative models but can instead leverage latent features from smaller ones. Our findings motivate a paradigm shift from LLM-as-a-Judge to Representation-as-a-Judge, a decoding-free evaluation strategy that probes internal model structure rather than relying on prompted output. We instantiate this paradigm through INSPECTOR, a probing-based framework that predicts aspect-level evaluation scores from small model representations. Experiments on reasoning benchmarks (GSM8K, MATH, GPQA) show that INSPECTOR substantially outperforms prompting-based small LMs and closely approximates full LLM judges, while offering a more efficient, reliable, and interpretable alternative for scalable evaluation.
Abstract:Recent advancements in single-cell multi-omics, particularly RNA-seq, have provided profound insights into cellular heterogeneity and gene regulation. While pre-trained language model (PLM) paradigm based single-cell foundation models have shown promise, they remain constrained by insufficient integration of in-depth individual profiles and neglecting the influence of noise within multi-modal data. To address both issues, we propose an Open-world Language Knowledge-Aided Robust Single-Cell Foundation Model (OKR-CELL). It is built based on a cross-modal Cell-Language pre-training framework, which comprises two key innovations: (1) leveraging Large Language Models (LLMs) based workflow with retrieval-augmented generation (RAG) enriches cell textual descriptions using open-world knowledge; (2) devising a Cross-modal Robust Alignment (CRA) objective that incorporates sample reliability assessment, curriculum learning, and coupled momentum contrastive learning to strengthen the model's resistance to noisy data. After pretraining on 32M cell-text pairs, OKR-CELL obtains cutting-edge results across 6 evaluation tasks. Beyond standard benchmarks such as cell clustering, cell-type annotation, batch-effect correction, and few-shot annotation, the model also demonstrates superior performance in broader multi-modal applications, including zero-shot cell-type annotation and bidirectional cell-text retrieval.
Abstract:Precipitation nowcasting is critically important for meteorological forecasting. Deep learning-based Radar Echo Extrapolation (REE) has become a predominant nowcasting approach, yet it suffers from poor generalization due to its reliance on high-quality local training data and static model parameters, limiting its applicability across diverse regions and extreme events. To overcome this, we propose REE-TTT, a novel model that incorporates an adaptive Test-Time Training (TTT) mechanism. The core of our model lies in the newly designed Spatio-temporal Test-Time Training (ST-TTT) block, which replaces the standard linear projections in TTT layers with task-specific attention mechanisms, enabling robust adaptation to non-stationary meteorological distributions and thereby significantly enhancing the feature representation of precipitation. Experiments under cross-regional extreme precipitation scenarios demonstrate that REE-TTT substantially outperforms state-of-the-art baseline models in prediction accuracy and generalization, exhibiting remarkable adaptability to data distribution shifts.
Abstract:We introduce CPPO, a Contrastive Perception Policy Optimization method for finetuning vision-language models (VLMs). While reinforcement learning (RL) has advanced reasoning in language models, extending it to multimodal reasoning requires improving both the perception and reasoning aspects. Prior works tackle this challenge mainly with explicit perception rewards, but disentangling perception tokens from reasoning tokens is difficult, requiring extra LLMs, ground-truth data, forced separation of perception from reasoning by policy model, or applying rewards indiscriminately to all output tokens. CPPO addresses this problem by detecting perception tokens via entropy shifts in the model outputs under perturbed input images. CPPO then extends the RL objective function with a Contrastive Perception Loss (CPL) that enforces consistency under information-preserving perturbations and sensitivity under information-removing ones. Experiments show that CPPO surpasses previous perception-rewarding methods, while avoiding extra models, making training more efficient and scalable.