Beijing University of Technology
Abstract:Precipitation nowcasting is critically important for meteorological forecasting. Deep learning-based Radar Echo Extrapolation (REE) has become a predominant nowcasting approach, yet it suffers from poor generalization due to its reliance on high-quality local training data and static model parameters, limiting its applicability across diverse regions and extreme events. To overcome this, we propose REE-TTT, a novel model that incorporates an adaptive Test-Time Training (TTT) mechanism. The core of our model lies in the newly designed Spatio-temporal Test-Time Training (ST-TTT) block, which replaces the standard linear projections in TTT layers with task-specific attention mechanisms, enabling robust adaptation to non-stationary meteorological distributions and thereby significantly enhancing the feature representation of precipitation. Experiments under cross-regional extreme precipitation scenarios demonstrate that REE-TTT substantially outperforms state-of-the-art baseline models in prediction accuracy and generalization, exhibiting remarkable adaptability to data distribution shifts.
Abstract:We introduce CPPO, a Contrastive Perception Policy Optimization method for finetuning vision-language models (VLMs). While reinforcement learning (RL) has advanced reasoning in language models, extending it to multimodal reasoning requires improving both the perception and reasoning aspects. Prior works tackle this challenge mainly with explicit perception rewards, but disentangling perception tokens from reasoning tokens is difficult, requiring extra LLMs, ground-truth data, forced separation of perception from reasoning by policy model, or applying rewards indiscriminately to all output tokens. CPPO addresses this problem by detecting perception tokens via entropy shifts in the model outputs under perturbed input images. CPPO then extends the RL objective function with a Contrastive Perception Loss (CPL) that enforces consistency under information-preserving perturbations and sensitivity under information-removing ones. Experiments show that CPPO surpasses previous perception-rewarding methods, while avoiding extra models, making training more efficient and scalable.
Abstract:Accurate mortality risk prediction for intensive care unit (ICU) patients is essential for clinical decision-making. Although large language models (LLMs) show promise in predicting outcomes from structured medical data, their predictions may exhibit demographic biases related to sex, age, and race, limiting their trustworthy use in clinical practice. Existing debiasing methods often reduce predictive performance, making it difficult to jointly optimize fairness and accuracy. In this study, we systematically examine bias in LLM-based ICU mortality prediction and propose a training-free, clinically adaptive prompting framework to simultaneously improve fairness and performance. We first develop a multi-dimensional bias assessment scheme for comprehensive model diagnosis. Building on this analysis, we introduce CAse Prompting (CAP), a novel prompting framework that integrates conventional debiasing prompts with case-based reasoning. CAP guides the model to learn from similar historical misprediction cases and their correct outcomes, enabling correction of biased reasoning patterns. Experiments on the MIMIC-IV dataset show that CAP substantially improves both predictive accuracy and fairness. CAP increases AUROC from 0.806 to 0.873 and AUPRC from 0.497 to 0.694, while reducing sex- and race-related disparities by over 90%. Feature reliance analysis further indicates highly consistent attention patterns across demographic groups, with similarity scores exceeding 0.98. These results demonstrate that LLMs exhibit measurable bias in ICU mortality prediction, and that a carefully designed prompting framework can effectively co-optimize fairness and performance without retraining, offering a transferable paradigm for equitable clinical decision support.
Abstract:Current video avatar generation methods excel at identity preservation and motion alignment but lack genuine agency, they cannot autonomously pursue long-term goals through adaptive environmental interaction. We address this by introducing L-IVA (Long-horizon Interactive Visual Avatar), a task and benchmark for evaluating goal-directed planning in stochastic generative environments, and ORCA (Online Reasoning and Cognitive Architecture), the first framework enabling active intelligence in video avatars. ORCA embodies Internal World Model (IWM) capabilities through two key innovations: (1) a closed-loop OTAR cycle (Observe-Think-Act-Reflect) that maintains robust state tracking under generative uncertainty by continuously verifying predicted outcomes against actual generations, and (2) a hierarchical dual-system architecture where System 2 performs strategic reasoning with state prediction while System 1 translates abstract plans into precise, model-specific action captions. By formulating avatar control as a POMDP and implementing continuous belief updating with outcome verification, ORCA enables autonomous multi-step task completion in open-domain scenarios. Extensive experiments demonstrate that ORCA significantly outperforms open-loop and non-reflective baselines in task success rate and behavioral coherence, validating our IWM-inspired design for advancing video avatar intelligence from passive animation to active, goal-oriented behavior.
Abstract:Accurate and interpretable forecasting of multivariate time series is crucial for understanding the complex dynamics of cryptocurrency markets in digital asset systems. Advanced deep learning methodologies, particularly Transformer-based and MLP-based architectures, have achieved competitive predictive performance in cryptocurrency forecasting tasks. However, cryptocurrency data is inherently composed of long-term socio-economic trends and local high-frequency speculative oscillations. Existing deep learning-based 'black-box' models fail to effectively decouple these composite dynamics or provide the interpretability needed for trustworthy financial decision-making. To overcome these limitations, we propose DecoKAN, an interpretable forecasting framework that integrates multi-level Discrete Wavelet Transform (DWT) for decoupling and hierarchical signal decomposition with Kolmogorov-Arnold Network (KAN) mixers for transparent and interpretable nonlinear modeling. The DWT component decomposes complex cryptocurrency time series into distinct frequency components, enabling frequency-specific analysis, while KAN mixers provide intrinsically interpretable spline-based mappings within each decomposed subseries. Furthermore, interpretability is enhanced through a symbolic analysis pipeline involving sparsification, pruning, and symbolization, which produces concise analytical expressions offering symbolic representations of the learned patterns. Extensive experiments demonstrate that DecoKAN achieves the lowest average Mean Squared Error on all tested real-world cryptocurrency datasets (BTC, ETH, XMR), consistently outperforming a comprehensive suite of competitive state-of-the-art baselines. These results validate DecoKAN's potential to bridge the gap between predictive accuracy and model transparency, advancing trustworthy decision support within complex cryptocurrency markets.
Abstract:Modern LLM applications such as deep-research assistants, coding agents, and Retrieval-Augmented Generation (RAG) systems, repeatedly process long prompt histories containing shared document or code chunks, creating significant pressure on the Key Value (KV) cache, which must operate within limited memory while sustaining high throughput and low latency. Prefix caching partially alleviates some of these costs by reusing KV cache for previously processed tokens, but limited by strict prefix matching. Position-independent caching (PIC) enables chunk-level reuse at arbitrary positions, but requires selective recomputation and positional-encoding (PE) adjustments. However, because these operations vary across queries, KV for the same chunk diverges across requests. Moreover, without page alignment, chunk KV layouts diverge in memory, preventing page sharing. These issues result in only modest HBM savings even when many requests reuse the same content. We present MEPIC, a memory-efficient PIC system that enables chunk KV reuse across positions, requests, and batches. MEPIC aligns chunk KV to paged storage, shifts recomputation from token- to block-level so only the first block is request-specific, removes positional encodings via Rotary Position Embedding (RoPE) fusion in the attention kernel, and makes remaining blocks fully shareable. These techniques eliminate most duplicate chunk KV in HBM, reducing usage by up to 2x over state-of-the-art PIC at comparable latency and accuracy, and up to 5x for long prompts, without any model changes.




Abstract:Deploying multiple models within shared GPU clusters is promising for improving resource efficiency in large language model (LLM) serving. Existing multi-LLM serving systems optimize GPU utilization at the cost of worse inference performance, especially time-to-first-token (TTFT). We identify the root cause of such compromise as their unawareness of future workload characteristics. In contrast, recent analysis on real-world traces has shown the high periodicity and long-term predictability of LLM serving workloads. We propose universal GPU workers to enable one-for-many GPU prewarming that loads models with knowledge of future workloads. Based on universal GPU workers, we design and build WarmServe, a multi-LLM serving system that (1) mitigates cluster-wide prewarming interference by adopting an evict-aware model placement strategy, (2) prepares universal GPU workers in advance by proactive prewarming, and (3) manages GPU memory with a zero-overhead memory switching mechanism. Evaluation under real-world datasets shows that WarmServe improves TTFT by up to 50.8$\times$ compared to the state-of-the-art autoscaling-based system, while being capable of serving up to 2.5$\times$ more requests compared to the GPU-sharing system.




Abstract:Schema linking -- the process of aligning natural language questions with database schema elements -- is a critical yet underexplored component of Text-to-SQL systems. While recent methods have focused primarily on improving SQL generation, they often neglect the retrieval of relevant schema elements, which can lead to hallucinations and execution failures. In this work, we propose a context-aware bidirectional schema retrieval framework that treats schema linking as a standalone problem. Our approach combines two complementary strategies: table-first retrieval followed by column selection, and column-first retrieval followed by table selection. It is further augmented with techniques such as question decomposition, keyword extraction, and keyphrase extraction. Through comprehensive evaluations on challenging benchmarks such as BIRD and Spider, we demonstrate that our method significantly improves schema recall while reducing false positives. Moreover, SQL generation using our retrieved schema consistently outperforms full-schema baselines and closely approaches oracle performance, all without requiring query refinement. Notably, our method narrows the performance gap between full and perfect schema settings by 50\%. Our findings highlight schema linking as a powerful lever for enhancing Text-to-SQL accuracy and efficiency.
Abstract:Cross-domain sequential recommendation (CDSR) aims to align heterogeneous user behavior sequences collected from different domains. While cross-attention is widely used to enhance alignment and improve recommendation performance, its underlying mechanism is not fully understood. Most researchers interpret cross-attention as residual alignment, where the output is generated by removing redundant and preserving non-redundant information from the query input by referencing another domain data which is input key and value. Beyond the prevailing view, we introduce Orthogonal Alignment, a phenomenon in which cross-attention discovers novel information that is not present in the query input, and further argue that those two contrasting alignment mechanisms can co-exist in recommendation models We find that when the query input and output of cross-attention are orthogonal, model performance improves over 300 experiments. Notably, Orthogonal Alignment emerges naturally, without any explicit orthogonality constraints. Our key insight is that Orthogonal Alignment emerges naturally because it improves scaling law. We show that baselines additionally incorporating cross-attention module outperform parameter-matched baselines, achieving a superior accuracy-per-model parameter. We hope these findings offer new directions for parameter-efficient scaling in multi-modal research.




Abstract:Supervised Fine-Tuning (SFT) is an effective method for adapting Large Language Models (LLMs) on downstream tasks. However, variability in training data can hinder a model's ability to generalize across domains. This paper studies the problem of dataset alignment for Natural Language to SQL (NL2SQL or text to SQL), examining how well SFT training data matches the structural characteristics of target queries and how this alignment impacts model performance. We hypothesize that alignment can be accurately estimated by comparing the distributions of structural SQL features across the training set, target data, and the model's predictions prior to SFT. Through comprehensive experiments on three large cross-domain NL2SQL benchmarks and multiple model families, we show that structural alignment is a strong predictor of fine-tuning success. When alignment is high, SFT yields substantial gains in accuracy and SQL generation quality; when alignment is low, improvements are marginal or absent. These findings highlight the importance of alignment-aware data selection for effective fine-tuning and generalization in NL2SQL tasks.