Victor
Abstract:Text embedding models serve as a fundamental component in real-world search applications. By mapping queries and documents into a shared embedding space, they deliver competitive retrieval performance with high efficiency. However, their ranking fidelity remains limited compared to dedicated rerankers, especially recent LLM-based listwise rerankers, which capture fine-grained query-document and document-document interactions. In this paper, we propose a simple yet effective unified framework $\text{E}^2\text{Rank}$, means Efficient Embedding-based Ranking (also means Embedding-to-Rank), which extends a single text embedding model to perform both high-quality retrieval and listwise reranking through continued training under a listwise ranking objective, thereby achieving strong effectiveness with remarkable efficiency. By applying cosine similarity between the query and document embeddings as a unified ranking function, the listwise ranking prompt, which is constructed from the original query and its candidate documents, serves as an enhanced query enriched with signals from the top-K documents, akin to pseudo-relevance feedback (PRF) in traditional retrieval models. This design preserves the efficiency and representational quality of the base embedding model while significantly improving its reranking performance. Empirically, $\textrm{E}^2\text{Rank}$ achieves state-of-the-art results on the BEIR reranking benchmark and demonstrates competitive performance on the reasoning-intensive BRIGHT benchmark, with very low reranking latency. We also show that the ranking training process improves embedding performance on the MTEB benchmark. Our findings indicate that a single embedding model can effectively unify retrieval and reranking, offering both computational efficiency and competitive ranking accuracy.
Abstract:The primary form of user-internet engagement is shifting from leveraging implicit feedback signals, such as browsing and clicks, to harnessing the rich explicit feedback provided by textual interactive behaviors. This shift unlocks a rich source of user textual history, presenting a profound opportunity for a deeper form of personalization. However, prevailing approaches offer only a shallow form of personalization, as they treat user history as a flat list of texts for retrieval and fail to model the rich temporal and semantic structures reflecting dynamic nature of user interests. In this work, we propose \textbf{MemWeaver}, a framework that weaves the user's entire textual history into a hierarchical memory to power deeply personalized generation. The core innovation of our memory lies in its ability to capture both the temporal evolution of interests and the semantic relationships between different activities. To achieve this, MemWeaver builds two complementary memory components that both integrate temporal and semantic information, but at different levels of abstraction: behavioral memory, which captures specific user actions, and cognitive memory, which represents long-term preferences. This dual-component memory serves as a unified representation of the user, allowing large language models (LLMs) to reason over both concrete behaviors and abstracted traits. Experiments on the Language Model Personalization (LaMP) benchmark validate the efficacy of MemWeaver. Our code is available\footnote{https://github.com/fishsure/MemWeaver}.
Abstract:Large Language Models (LLMs) have recently advanced the field of Automated Theorem Proving (ATP), attaining substantial performance gains through widely adopted test-time scaling strategies, notably reflective Chain-of-Thought (CoT) reasoning and increased sampling passes. However, they both introduce significant computational overhead for inference. Moreover, existing cost analyses typically regulate only the number of sampling passes, while neglecting the substantial disparities in sampling costs introduced by different scaling strategies. In this paper, we systematically compare the efficiency of different test-time scaling strategies for ATP models and demonstrate the inefficiency of the current state-of-the-art (SOTA) open-source approaches. We then investigate approaches to significantly reduce token usage and sample passes while maintaining the original performance. Specifically, we propose two complementary methods that can be integrated into a unified EconRL pipeline for amplified benefits: (1) a dynamic Chain-of-Thought (CoT) switching mechanism designed to mitigate unnecessary token consumption, and (2) Diverse parallel-scaled reinforcement learning (RL) with trainable prefixes to enhance pass rates under constrained sampling passes. Experiments on miniF2F and ProofNet demonstrate that our EconProver achieves comparable performance to baseline methods with only 12% of the computational cost. This work provides actionable insights for deploying lightweight ATP models without sacrificing performance.
Abstract:Modeling user interest based on lifelong user behavior sequences is crucial for enhancing Click-Through Rate (CTR) prediction. However, long post-click behavior sequences themselves pose severe performance issues: the sheer volume of data leads to high computational costs and inefficiencies in model training and inference. Traditional methods address this by introducing two-stage approaches, but this compromises model effectiveness due to incomplete utilization of the full sequence context. More importantly, integrating multimodal embeddings into existing large recommendation models (LRM) presents significant challenges: These embeddings often exacerbate computational burdens and mismatch with LRM architectures. To address these issues and enhance the model's efficiency and accuracy, we introduce Deep Multimodal Group Interest Network (DMGIN). Given the observation that user post-click behavior sequences contain a large number of repeated items with varying behaviors and timestamps, DMGIN employs Multimodal LLMs(MLLM) for grouping to reorganize complete lifelong post-click behavior sequences more effectively, with almost no additional computational overhead, as opposed to directly introducing multimodal embeddings. To mitigate the potential information loss from grouping, we have implemented two key strategies. First, we analyze behaviors within each group using both interest statistics and intra-group transformers to capture group traits. Second, apply inter-group transformers to temporally ordered groups to capture the evolution of user group interests. Our extensive experiments on both industrial and public datasets confirm the effectiveness and efficiency of DMGIN. The A/B test in our LBS advertising system shows that DMGIN improves CTR by 4.7% and Revenue per Mile by 2.3%.
Abstract:In Click-Through Rate (CTR) prediction, the long behavior sequence, comprising the user's long period of historical interactions with items has a vital influence on assessing the user's interest in the candidate item. Existing approaches strike efficiency and effectiveness through a two-stage paradigm: first retrieving hundreds of candidate-related items and then extracting interest intensity vector through target attention. However, we argue that the discrepancy in target attention's relevance distribution between the retrieved items and the full long behavior sequence inevitably leads to a performance decline. To alleviate the discrepancy, we propose the Deep Multiple Quantization Network (DMQN) to process long behavior sequence end-to-end through compressing the long behavior sequence. Firstly, the entire spectrum of long behavior sequence will be quantized into multiple codeword sequences based on multiple independent codebooks. Hierarchical Sequential Transduction Unit is incorporated to facilitate the interaction of reduced codeword sequences. Then, attention between the candidate and multiple codeword sequences will output the interest vector. To enable online serving, intermediate representations of the codeword sequences are cached, significantly reducing latency. Our extensive experiments on both industrial and public datasets confirm the effectiveness and efficiency of DMQN. The A/B test in our advertising system shows that DMQN improves CTR by 3.5% and RPM by 2.0%.
Abstract:This paper proposes a novel method to enhance locomotion for a single humanoid robot through cooperative-heterogeneous multi-agent deep reinforcement learning (MARL). While most existing methods typically employ single-agent reinforcement learning algorithms for a single humanoid robot or MARL algorithms for multi-robot system tasks, we propose a distinct paradigm: applying cooperative-heterogeneous MARL to optimize locomotion for a single humanoid robot. The proposed method, multi-agent reinforcement learning for single humanoid locomotion (MASH), treats each limb (legs and arms) as an independent agent that explores the robot's action space while sharing a global critic for cooperative learning. Experiments demonstrate that MASH accelerates training convergence and improves whole-body cooperation ability, outperforming conventional single-agent reinforcement learning methods. This work advances the integration of MARL into single-humanoid-robot control, offering new insights into efficient locomotion strategies.
Abstract:Human-Object Interaction (HOI) detection aims to localize human-object pairs and recognize their interactions in images. Although DETR-based methods have recently emerged as the mainstream framework for HOI detection, they still suffer from a key limitation: Randomly initialized queries lack explicit semantics, leading to suboptimal detection performance. To address this challenge, we propose QueryCraft, a novel plug-and-play HOI detection framework that incorporates semantic priors and guided feature learning through transformer-based query initialization. Central to our approach is \textbf{ACTOR} (\textbf{A}ction-aware \textbf{C}ross-modal \textbf{T}ransf\textbf{OR}mer), a cross-modal Transformer encoder that jointly attends to visual regions and textual prompts to extract action-relevant features. Rather than merely aligning modalities, ACTOR leverages language-guided attention to infer interaction semantics and produce semantically meaningful query representations. To further enhance object-level query quality, we introduce a \textbf{P}erceptual \textbf{D}istilled \textbf{Q}uery \textbf{D}ecoder (\textbf{PDQD}), which distills object category awareness from a pre-trained detector to serve as object query initiation. This dual-branch query initialization enables the model to generate more interpretable and effective queries for HOI detection. Extensive experiments on HICO-Det and V-COCO benchmarks demonstrate that our method achieves state-of-the-art performance and strong generalization. Code will be released upon publication.
Abstract:Capturing human learning behavior based on deep learning methods has become a major research focus in both psychology and intelligent systems. Recent approaches rely on controlled experiments or rule-based models to explore cognitive processes. However, they struggle to capture learning dynamics, track progress over time, or provide explainability. To address these challenges, we introduce LearnerAgent, a novel multi-agent framework based on Large Language Models (LLMs) to simulate a realistic teaching environment. To explore human-like learning dynamics, we construct learners with psychologically grounded profiles-such as Deep, Surface, and Lazy-as well as a persona-free General Learner to inspect the base LLM's default behavior. Through weekly knowledge acquisition, monthly strategic choices, periodic tests, and peer interaction, we can track the dynamic learning progress of individual learners over a full-year journey. Our findings are fourfold: 1) Longitudinal analysis reveals that only Deep Learner achieves sustained cognitive growth. Our specially designed "trap questions" effectively diagnose Surface Learner's shallow knowledge. 2) The behavioral and cognitive patterns of distinct learners align closely with their psychological profiles. 3) Learners' self-concept scores evolve realistically, with the General Learner developing surprisingly high self-efficacy despite its cognitive limitations. 4) Critically, the default profile of base LLM is a "diligent but brittle Surface Learner"-an agent that mimics the behaviors of a good student but lacks true, generalizable understanding. Extensive simulation experiments demonstrate that LearnerAgent aligns well with real scenarios, yielding more insightful findings about LLMs' behavior.
Abstract:Diffusion models, a type of generative model, have shown promise in time series forecasting. But they face limitations like rigid source distributions and limited sampling paths, which hinder their performance. Flow matching offers faster generation, higher-quality outputs, and greater flexibility, while also possessing the ability to utilize valuable information from the prediction errors of prior models, which were previously inaccessible yet critically important. To address these challenges and fully unlock the untapped potential of flow matching, we propose Conditional Guided Flow Matching (CGFM). CGFM extends flow matching by incorporating the outputs of an auxiliary model, enabling a previously unattainable capability in the field: learning from the errors of the auxiliary model. For time series forecasting tasks, it integrates historical data as conditions and guidance, constructs two-sided conditional probability paths, and uses a general affine path to expand the space of probability paths, ultimately leading to improved predictions. Extensive experiments show that CGFM consistently enhances and outperforms state-of-the-art models, highlighting its effectiveness in advancing forecasting methods.
Abstract:The task of Human-Object conTact (HOT) detection involves identifying the specific areas of the human body that are touching objects. Nevertheless, current models are restricted to just one type of image, often leading to too much segmentation in areas with little interaction, and struggling to maintain category consistency within specific regions. To tackle this issue, a HOT framework, termed \textbf{P3HOT}, is proposed, which blends \textbf{P}rompt guidance and human \textbf{P}roximal \textbf{P}erception. To begin with, we utilize a semantic-driven prompt mechanism to direct the network's attention towards the relevant regions based on the correlation between image and text. Then a human proximal perception mechanism is employed to dynamically perceive key depth range around the human, using learnable parameters to effectively eliminate regions where interactions are not expected. Calculating depth resolves the uncertainty of the overlap between humans and objects in a 2D perspective, providing a quasi-3D viewpoint. Moreover, a Regional Joint Loss (RJLoss) has been created as a new loss to inhibit abnormal categories in the same area. A new evaluation metric called ``AD-Acc.'' is introduced to address the shortcomings of existing methods in addressing negative samples. Comprehensive experimental results demonstrate that our approach achieves state-of-the-art performance in four metrics across two benchmark datasets. Specifically, our model achieves an improvement of \textbf{0.7}$\uparrow$, \textbf{2.0}$\uparrow$, \textbf{1.6}$\uparrow$, and \textbf{11.0}$\uparrow$ in SC-Acc., mIoU, wIoU, and AD-Acc. metrics, respectively, on the HOT-Annotated dataset. Code is available at https://github.com/YuxiaoWang-AI/P3HOT.