School of Information Science and Technology, ShanghaiTech University
Abstract:In this paper, we propose a novel and efficient parameter estimator based on $k$-Nearest Neighbor ($k$NN) and data generation method for the Lognormal-Rician turbulence channel. The Kolmogorov-Smirnov (KS) goodness-of-fit statistical tools are employed to investigate the validity of $k$NN approximation under different channel conditions and it is shown that the choice of $k$ plays a significant role in the approximation accuracy. We present several numerical results to illustrate that solving the constructed objective function can provide a reasonable estimate for the actual values. The accuracy of the proposed estimator is investigated in terms of the mean square error. The simulation results show that increasing the number of generation samples by two orders of magnitude does not lead to a significant improvement in estimation performance when solving the optimization problem by the gradient descent algorithm. However, the estimation performance under the genetic algorithm (GA) approximates to that of the saddlepoint approximation and expectation-maximization estimators. Therefore, combined with the GA, we demonstrate that the proposed estimator achieves the best tradeoff between the computation complexity and the accuracy.
Abstract:In multi-source remote sensing image classification field, remarkable progress has been made by convolutional neural network and Transformer. However, existing methods are still limited due to the inherent local reductive bias. Recently, Mamba-based methods built upon the State Space Model have shown great potential for long-range dependency modeling with linear complexity, but it has rarely been explored for the multi-source remote sensing image classification task. To this end, we propose Multi-Scale Feature Fusion Mamba (MSFMamba) network for hyperspectral image (HSI) and LiDAR/SAR data joint classification. Specifically, MSFMamba mainly comprises three parts: Multi-Scale Spatial Mamba (MSpa-Mamba) block, Spectral Mamba (Spe-Mamba) block, and Fusion Mamba (Fus-Mamba) block. Specifically, to solve the feature redundancy in multiple canning routes, the MSpa-Mamba block incorporates the multi-scale strategy to minimize the computational redundancy and alleviate the feature redundancy of SSM. In addition, Spe-Mamba is designed for spectral feature exploration, which is essential for HSI feature modeling. Moreover, to alleviate the heterogeneous gap between HSI and LiDAR/SAR data, we design Fus-Mamba block for multi-source feature fusion. The original Mamba is extended to accommodate dual inputs, and cross-modal feature interaction is enhanced. Extensive experimental results on three multi-source remote sensing datasets demonstrate the superiority performance of the proposed MSFMamba over the state-of-the-art models. Source codes of MSFMamba will be made public available at https://github.com/summitgao/MSFMamba .
Abstract:Hyperspectral image (HSI) and synthetic aperture radar (SAR) data joint classification is a crucial and yet challenging task in the field of remote sensing image interpretation. However, feature modeling in existing methods is deficient to exploit the abundant global, spectral, and local features simultaneously, leading to sub-optimal classification performance. To solve the problem, we propose a hierarchical attention and parallel filter fusion network for multi-source data classification. Concretely, we design a hierarchical attention module for hyperspectral feature extraction. This module integrates global, spectral, and local features simultaneously to provide more comprehensive feature representation. In addition, we develop parallel filter fusion module which enhances cross-modal feature interactions among different spatial locations in the frequency domain. Extensive experiments on two multi-source remote sensing data classification datasets verify the superiority of our proposed method over current state-of-the-art classification approaches. Specifically, our proposed method achieves 91.44% and 80.51% of overall accuracy (OA) on the respective datasets, highlighting its superior performance.
Abstract:Photoacoustic (PA) imaging technology combines the advantages of optical imaging and ultrasound imaging, showing great potential in biomedical applications. Many preclinical studies and clinical applications urgently require fast, high-quality, low-cost and portable imaging system. Translating advanced image reconstruction algorithms into hardware implementations is highly desired. However, existing iterative PA image reconstructions, although exhibit higher accuracy than delay-and-sum algorithm, suffer from high computational cost. In this paper, we introduce a model-based hardware acceleration architecture based on superposed Wave (s-Wave) for palm-size PA tomography (palm-PAT), aiming at enhancing both the speed and performance of image reconstruction at a much lower system cost. To achieve this, we propose an innovative data reuse method that significantly reduces hardware storage resource consumption. We conducted experiments by FPGA implementation of the algorithm, using both phantoms and in vivo human finger data to verify the feasibility of the proposed method. The results demonstrate that our proposed architecture can substantially reduce system cost while maintaining high imaging performance. The hardware-accelerated implementation of the model-based algorithm achieves a speedup of up to approximately 270 times compared to the CPU, while the corresponding energy efficiency ratio is improved by more than 2700 times.
Abstract:Synthetic aperture radar (SAR) image change detection is critical in remote sensing image analysis. Recently, the attention mechanism has been widely used in change detection tasks. However, existing attention mechanisms often employ down-sampling operations such as average pooling on the Key and Value components to enhance computational efficiency. These irreversible operations result in the loss of high-frequency components and other important information. To address this limitation, we develop Wavelet-based Bi-dimensional Aggregation Network (WBANet) for SAR image change detection. We design a wavelet-based self-attention block that includes discrete wavelet transform and inverse discrete wavelet transform operations on Key and Value components. Hence, the feature undergoes downsampling without any loss of information, while simultaneously enhancing local contextual awareness through an expanded receptive field. Additionally, we have incorporated a bi-dimensional aggregation module that boosts the non-linear representation capability by merging spatial and channel information via broadcast mechanism. Experimental results on three SAR datasets demonstrate that our WBANet significantly outperforms contemporary state-of-the-art methods. Specifically, our WBANet achieves 98.33\%, 96.65\%, and 96.62\% of percentage of correct classification (PCC) on the respective datasets, highlighting its superior performance. Source codes are available at \url{https://github.com/summitgao/WBANet}.
Abstract:Human motion generation is a critical task with a wide range of applications. Achieving high realism in generated motions requires naturalness, smoothness, and plausibility. Despite rapid advancements in the field, current generation methods often fall short of these goals. Furthermore, existing evaluation metrics typically rely on ground-truth-based errors, simple heuristics, or distribution distances, which do not align well with human perceptions of motion quality. In this work, we propose a data-driven approach to bridge this gap by introducing a large-scale human perceptual evaluation dataset, MotionPercept, and a human motion critic model, MotionCritic, that capture human perceptual preferences. Our critic model offers a more accurate metric for assessing motion quality and could be readily integrated into the motion generation pipeline to enhance generation quality. Extensive experiments demonstrate the effectiveness of our approach in both evaluating and improving the quality of generated human motions by aligning with human perceptions. Code and data are publicly available at https://motioncritic.github.io/.
Abstract:Cross-Domain Few-Shot Learning has witnessed great stride with the development of meta-learning. However, most existing methods pay more attention to learning domain-adaptive inductive bias (meta-knowledge) through feature-wise manipulation or task diversity improvement while neglecting the phenomenon that deep networks tend to rely more on high-frequency cues to make the classification decision, which thus degenerates the robustness of learned inductive bias since high-frequency information is vulnerable and easy to be disturbed by noisy information. Hence in this paper, we make one of the first attempts to propose a Frequency-Aware Prompting method with mutual attention for Cross-Domain Few-Shot classification, which can let networks simulate the human visual perception of selecting different frequency cues when facing new recognition tasks. Specifically, a frequency-aware prompting mechanism is first proposed, in which high-frequency components of the decomposed source image are switched either with normal distribution sampling or zeroing to get frequency-aware augment samples. Then, a mutual attention module is designed to learn generalizable inductive bias under CD-FSL settings. More importantly, the proposed method is a plug-and-play module that can be directly applied to most off-the-shelf CD-FLS methods. Experimental results on CD-FSL benchmarks demonstrate the effectiveness of our proposed method as well as robustly improve the performance of existing CD-FLS methods. Resources at https://github.com/tinkez/FAP_CDFSC.
Abstract:Spatial planning in cluttered environments is crucial for mobile systems, particularly agile quadrotors. Existing methods, both optimization-based and learning-based, often focus only on success rates in specific environments and lack a unified platform with tasks of varying difficulty. To address this, we introduce FlightBench, the first comprehensive open-source benchmark for 3D spatial planning on quadrotors, comparing classical optimization-based methods with emerging learning-based approaches. We also develop a suite of task difficulty metrics and evaluation metrics to quantify the characteristics of tasks and the performance of planning algorithms. Extensive experiments demonstrate the significant advantages of learning-based methods for high-speed flight and real-time planning, while highlighting the need for improvements in complex conditions, such as navigating large corners or dealing with view occlusion. We also conduct analytical experiments to justify the effectiveness of our proposed metrics. Additionally, we show that latency randomization effectively enhances performance in real-world deployments. The source code is available at \url{https://github.com/thu-uav/FlightBench}.
Abstract:In this paper, we proposed large selective kernel and sparse attention network (LSKSANet) for remote sensing image semantic segmentation. The LSKSANet is a lightweight network that effectively combines convolution with sparse attention mechanisms. Specifically, we design large selective kernel module to decomposing the large kernel into a series of depth-wise convolutions with progressively increasing dilation rates, thereby expanding the receptive field without significantly increasing the computational burden. In addition, we introduce the sparse attention to keep the most useful self-attention values for better feature aggregation. Experimental results on the Vaihingen and Postdam datasets demonstrate the superior performance of the proposed LSKSANet over state-of-the-art methods.
Abstract:Although recent masked image modeling (MIM)-based HSI-LiDAR/SAR classification methods have gradually recognized the importance of the spectral information, they have not adequately addressed the redundancy among different spectra, resulting in information leakage during the pretraining stage. This issue directly impairs the representation ability of the model. To tackle the problem, we propose a new strategy, named Mining Redundant Spectra (MRS). Unlike randomly masking spectral bands, MRS selectively masks them by similarity to increase the reconstruction difficulty. Specifically, a random spectral band is chosen during pretraining, and the selected and highly similar bands are masked. Experimental results demonstrate that employing the MRS strategy during the pretraining stage effectively improves the accuracy of existing MIM-based methods on the Berlin and Houston 2018 datasets.