In this paper, we provide a fine-grained analysis of the local landscape of phase retrieval under the regime with limited samples. Our aim is to ascertain the minimal sample size necessary to guarantee a benign local landscape surrounding global minima in high dimensions. Let $n$ and $d$ denote the sample size and input dimension, respectively. We first explore the local convexity and establish that when $n=o(d\log d)$, for almost every fixed point in the local ball, the Hessian matrix must have negative eigenvalues as long as $d$ is sufficiently large. Consequently, the local landscape is highly non-convex. We next consider the one-point strong convexity and show that as long as $n=\omega(d)$, with high probability, the landscape is one-point strongly convex in the local annulus: $\{w\in\mathbb{R}^d: o_d(1)\leqslant \|w-w^*\|\leqslant c\}$, where $w^*$ is the ground truth and $c$ is an absolute constant. This implies that gradient descent initialized from any point in this domain can converge to an $o_d(1)$-loss solution exponentially fast. Furthermore, we show that when $n=o(d\log d)$, there is a radius of $\widetilde\Theta\left(\sqrt{1/d}\right)$ such that one-point convexity breaks in the corresponding smaller local ball. This indicates an impossibility to establish a convergence to exact $w^*$ for gradient descent under limited samples by relying solely on one-point convexity.
In this work, we investigate the margin-maximization bias exhibited by gradient-based algorithms in classifying linearly separable data. We present an in-depth analysis of the specific properties of the velocity field associated with (normalized) gradients, focusing on their role in margin maximization. Inspired by this analysis, we propose a novel algorithm called Progressive Rescaling Gradient Descent (PRGD) and show that PRGD can maximize the margin at an {\em exponential rate}. This stands in stark contrast to all existing algorithms, which maximize the margin at a slow {\em polynomial rate}. Specifically, we identify mild conditions on data distribution under which existing algorithms such as gradient descent (GD) and normalized gradient descent (NGD) {\em provably fail} in maximizing the margin efficiently. To validate our theoretical findings, we present both synthetic and real-world experiments. Notably, PRGD also shows promise in enhancing the generalization performance when applied to linearly non-separable datasets and deep neural networks.
Empirical studies have demonstrated that the noise in stochastic gradient descent (SGD) aligns favorably with the local geometry of loss landscape. However, theoretical and quantitative explanations for this phenomenon remain sparse. In this paper, we offer a comprehensive theoretical investigation into the aforementioned {\em noise geometry} for over-parameterized linear (OLMs) models and two-layer neural networks. We scrutinize both average and directional alignments, paying special attention to how factors like sample size and input data degeneracy affect the alignment strength. As a specific application, we leverage our noise geometry characterizations to study how SGD escapes from sharp minima, revealing that the escape direction has significant components along flat directions. This is in stark contrast to GD, which escapes only along the sharpest directions. To substantiate our theoretical findings, both synthetic and real-world experiments are provided.
The advancements in vision-based tactile sensors have boosted the aptitude of robots to perform contact-rich manipulation, particularly when precise positioning and contact state of the manipulated objects are crucial for successful execution. In this work, we present 9DTact, a straightforward yet versatile tactile sensor that offers 3D shape reconstruction and 6D force estimation capabilities. Conceptually, 9DTact is designed to be highly compact, robust, and adaptable to various robotic platforms. Moreover, it is low-cost and DIY-friendly, requiring minimal assembly skills. Functionally, 9DTact builds upon the optical principles of DTact and is optimized to achieve 3D shape reconstruction with enhanced accuracy and efficiency. Remarkably, we leverage the optical and deformable properties of the translucent gel so that 9DTact can perform 6D force estimation without the participation of auxiliary markers or patterns on the gel surface. More specifically, we collect a dataset consisting of approximately 100,000 image-force pairs from 175 complex objects and train a neural network to regress the 6D force, which can generalize to unseen objects. To promote the development and applications of vision-based tactile sensors, we open-source both the hardware and software of 9DTact as well as present a 1-hour video tutorial.
In this work, we analyze the learnability of reproducing kernel Hilbert spaces (RKHS) under the $L^\infty$ norm, which is critical for understanding the performance of kernel methods and random feature models in safety- and security-critical applications. Specifically, we relate the $L^\infty$ learnability of a RKHS to the spectrum decay of the associate kernel and both lower bounds and upper bounds of the sample complexity are established. In particular, for dot-product kernels on the sphere, we identify conditions when the $L^\infty$ learning can be achieved with polynomial samples. Let $d$ denote the input dimension and assume the kernel spectrum roughly decays as $\lambda_k\sim k^{-1-\beta}$ with $\beta>0$. We prove that if $\beta$ is independent of the input dimension $d$, then functions in the RKHS can be learned efficiently under the $L^\infty$ norm, i.e., the sample complexity depends polynomially on $d$. In contrast, if $\beta=1/\mathrm{poly}(d)$, then the $L^\infty$ learning requires exponentially many samples.
Clinical monitoring of metastatic disease to the brain can be a laborious and time-consuming process, especially in cases involving multiple metastases when the assessment is performed manually. The Response Assessment in Neuro-Oncology Brain Metastases (RANO-BM) guideline, which utilizes the unidimensional longest diameter, is commonly used in clinical and research settings to evaluate response to therapy in patients with brain metastases. However, accurate volumetric assessment of the lesion and surrounding peri-lesional edema holds significant importance in clinical decision-making and can greatly enhance outcome prediction. The unique challenge in performing segmentations of brain metastases lies in their common occurrence as small lesions. Detection and segmentation of lesions that are smaller than 10 mm in size has not demonstrated high accuracy in prior publications. The brain metastases challenge sets itself apart from previously conducted MICCAI challenges on glioma segmentation due to the significant variability in lesion size. Unlike gliomas, which tend to be larger on presentation scans, brain metastases exhibit a wide range of sizes and tend to include small lesions. We hope that the BraTS-METS dataset and challenge will advance the field of automated brain metastasis detection and segmentation.
In this paper, we study the implicit regularization of stochastic gradient descent (SGD) through the lens of {\em dynamical stability} (Wu et al., 2018). We start by revising existing stability analyses of SGD, showing how the Frobenius norm and trace of Hessian relate to different notions of stability. Notably, if a global minimum is linearly stable for SGD, then the trace of Hessian must be less than or equal to $2/\eta$, where $\eta$ denotes the learning rate. By contrast, for gradient descent (GD), the stability imposes a similar constraint but only on the largest eigenvalue of Hessian. We then turn to analyze the generalization properties of these stable minima, focusing specifically on two-layer ReLU networks and diagonal linear networks. Notably, we establish the {\em equivalence} between these metrics of sharpness and certain parameter norms for the two models, which allows us to show that the stable minima of SGD provably generalize well. By contrast, the stability-induced regularization of GD is provably too weak to ensure satisfactory generalization. This discrepancy provides an explanation of why SGD often generalizes better than GD. Note that the learning rate (LR) plays a pivotal role in the strength of stability-induced regularization. As the LR increases, the regularization effect becomes more pronounced, elucidating why SGD with a larger LR consistently demonstrates superior generalization capabilities. Additionally, numerical experiments are provided to support our theoretical findings.
One of the fundamental problems in deep learning theory is understanding the approximation and generalization properties of two-layer neural networks in high dimensions. In order to tackle this issue, researchers have introduced the Barron space $\mathcal{B}_s(\Omega)$ and the spectral Barron space $\mathcal{F}_s(\Omega)$, where the index $s$ characterizes the smoothness of functions within these spaces and $\Omega\subset\mathbb{R}^d$ represents the input domain. However, it is still not clear what is the relationship between the two types of Barron spaces. In this paper, we establish continuous embeddings between these spaces as implied by the following inequality: for any $\delta\in (0,1), s\in \mathbb{N}^{+}$ and $f: \Omega \mapsto\mathbb{R}$, it holds that \[ \delta\gamma^{\delta-s}_{\Omega}\|f\|_{\mathcal{F}_{s-\delta}(\Omega)}\lesssim_s \|f\|_{\mathcal{B}_s(\Omega)}\lesssim_s \|f\|_{\mathcal{F}_{s+1}(\Omega)}, \] where $\gamma_{\Omega}=\sup_{\|v\|_2=1,x\in\Omega}|v^Tx|$ and notably, the hidden constants depend solely on the value of $s$. Furthermore, we provide examples to demonstrate that the lower bound is tight.
In this paper, we study the inductive biases in convolutional neural networks (CNNs), which are believed to be vital drivers behind CNNs' exceptional performance on vision-like tasks. We first analyze the universality of CNNs, i.e., the ability to approximate continuous functions. We prove that a depth of $\mathcal{O}(\log d)$ is sufficient for achieving universality, where $d$ is the input dimension. This is a significant improvement over existing results that required a depth of $\Omega(d)$. We also prove that learning sparse functions with CNNs needs only $\tilde{\mathcal{O}}(\log^2d)$ samples, indicating that deep CNNs can efficiently capture long-range sparse correlations. Note that all these are achieved through a novel combination of increased network depth and the utilization of multichanneling and downsampling. Lastly, we study the inductive biases of weight sharing and locality through the lens of symmetry. To separate two biases, we introduce locally-connected networks (LCNs), which can be viewed as CNNs without weight sharing. Specifically, we compare the performance of CNNs, LCNs, and fully-connected networks (FCNs) on a simple regression task. We prove that LCNs require ${\Omega}(d)$ samples while CNNs need only $\tilde{\mathcal{O}}(\log^2d)$ samples, which highlights the cruciality of weight sharing. We also prove that FCNs require $\Omega(d^2)$ samples while LCNs need only $\tilde{\mathcal{O}}(d)$ samples, demonstrating the importance of locality. These provable separations quantify the difference between the two biases, and our major observation behind is that weight sharing and locality break different symmetries in the learning process.
We consider the problem of learning functions in the $\mathcal{F}_{p,\pi}$ and Barron spaces, which are natural function spaces that arise in the high-dimensional analysis of random feature models (RFMs) and two-layer neural networks. Through a duality analysis, we reveal that the approximation and estimation of these spaces can be considered equivalent in a certain sense. This enables us to focus on the easier problem of approximation and estimation when studying the generalization of both models. The dual equivalence is established by defining an information-based complexity that can effectively control estimation errors. Additionally, we demonstrate the flexibility of our duality framework through comprehensive analyses of two concrete applications. The first application is to study learning functions in $\mathcal{F}_{p,\pi}$ with RFMs. We prove that the learning does not suffer from the curse of dimensionality as long as $p>1$, implying RFMs can work beyond the kernel regime. Our analysis extends existing results [CMM21] to the noisy case and removes the requirement of overparameterization. The second application is to investigate the learnability of reproducing kernel Hilbert space (RKHS) under the $L^\infty$ metric. We derive both lower and upper bounds of the minimax estimation error by using the spectrum of the associated kernel. We then apply these bounds to dot-product kernels and analyze how they scale with the input dimension. Our results suggest that learning with ReLU (random) features is generally intractable in terms of reaching high uniform accuracy.