May
Abstract:Although Multimodal Large Language Models (MLLMs) have shown remarkable potential in Visual Document Retrieval (VDR) through generating high-quality multi-vector embeddings, the substantial storage overhead caused by representing a page with thousands of visual tokens limits their practicality in real-world applications. To address this challenge, we propose an auto-regressive generation approach, CausalEmbed, for constructing multi-vector embeddings. By incorporating iterative margin loss during contrastive training, CausalEmbed encourages the embedding models to learn compact and well-structured representations. Our method enables efficient VDR tasks using only dozens of visual tokens, achieving a 30-155x reduction in token count while maintaining highly competitive performance across various backbones and benchmarks. Theoretical analysis and empirical results demonstrate the unique advantages of auto-regressive embedding generation in terms of training efficiency and scalability at test time. As a result, CausalEmbed introduces a flexible test-time scaling strategy for multi-vector VDR representations and sheds light on the generative paradigm within multimodal document retrieval.
Abstract:The linear growth of Key-Value (KV) cache remains a bottleneck for multi-turn LLM deployment. Existing KV cache compression methods often fail to account for the structural properties of multi-turn dialogues, relying on heuristic eviction that risks losing critical context. We propose \textbf{SONIC}, a learning-based framework that compresses historical segments into compact and semantically rich \textbf{Nexus} tokens. By integrating dynamic budget training, SONIC allows flexible adaptation to varying memory constraints without retraining. Experiments show that at compression ratios of 80\% and 50\%, SONIC consistently outperforms baselines such as H2O and StreamingLLM on four diverse multi-turn benchmarks. Specifically, on the widely used MTBench101 benchmark, SONIC achieves an average score improvement of 35.55\% over state-of-the-art baselines, validating its effectiveness in sustaining coherent multi-turn dialogues. Furthermore, SONIC enhances deployment efficiency, accelerating the overall inference process by 50.1\% compared to full-context generation.
Abstract:Mixture-of-Experts (MoE) architectures decouple model capacity from per-token computation, enabling scaling beyond the computational limits imposed by dense scaling laws. Yet how MoE architectures shape knowledge acquisition during pre-training, and how this process differs from dense architectures, remains unknown. To address this issue, we introduce Gated-LPI (Log-Probability Increase), a neuron-level attribution metric that decomposes log-probability increase across neurons. We present a time-resolved comparison of knowledge acquisition dynamics in MoE and dense architectures, tracking checkpoints over 1.2M training steps (~ 5.0T tokens) and 600K training steps (~ 2.5T tokens), respectively. Our experiments uncover three patterns: (1) Low-entropy backbone. The top approximately 1% of MoE neurons capture over 45% of positive updates, forming a high-utility core, which is absent in the dense baseline. (2) Early consolidation. The MoE model locks into a stable importance profile within < 100K steps, whereas the dense model remains volatile throughout training. (3) Functional robustness. Masking the ten most important MoE attention heads reduces relational HIT@10 by < 10%, compared with > 50% for the dense model, showing that sparsity fosters distributed -- rather than brittle -- knowledge storage. These patterns collectively demonstrate that sparsity fosters an intrinsically stable and distributed computational backbone from early in training, helping bridge the gap between sparse architectures and training-time interpretability.
Abstract:Watermarking has emerged as a pivotal solution for content traceability and intellectual property protection in Large Vision-Language Models (LVLMs). However, vision-agnostic watermarks introduce visually irrelevant tokens and disrupt visual grounding by enforcing indiscriminate pseudo-random biases, while some semantic-aware methods incur prohibitive inference latency due to rejection sampling. In this paper, we propose the VIsual Semantic Adaptive Watermark (VISA-Mark), a novel framework that embeds detectable signals while strictly preserving visual fidelity. Our approach employs a lightweight, efficiently trained prefix-tuner to extract dynamic Visual-Evidence Weights, which quantify the evidentiary support for candidate tokens based on the visual input. These weights guide an adaptive vocabulary partitioning and logits perturbation mechanism, concentrating watermark strength specifically on visually-supported tokens. By actively aligning the watermark with visual evidence, VISA-Mark effectively maintains visual fidelity. Empirical results confirm that VISA-Mark outperforms conventional methods with a 7.8% improvement in visual consistency (Chair-I) and superior semantic fidelity. The framework maintains highly competitive detection accuracy (96.88% AUC) and robust attack resilience (99.3%) without sacrificing inference efficiency, effectively establishing a new standard for reliability-preserving multimodal watermarking.
Abstract:Reasoning Large Language Models (RLLMs) excelling in complex tasks present unique challenges for digital watermarking, as existing methods often disrupt logical coherence or incur high computational costs. Token-based watermarking techniques can corrupt the reasoning flow by applying pseudo-random biases, while semantic-aware approaches improve quality but introduce significant latency or require auxiliary models. This paper introduces ReasonMark, a novel watermarking framework specifically designed for reasoning-intensive LLMs. Our approach decouples generation into an undisturbed Thinking Phase and a watermarked Answering Phase. We propose a Criticality Score to identify semantically pivotal tokens from the reasoning trace, which are distilled into a Principal Semantic Vector (PSV). The PSV then guides a semantically-adaptive mechanism that modulates watermark strength based on token-PSV alignment, ensuring robustness without compromising logical integrity. Extensive experiments show ReasonMark surpasses state-of-the-art methods by reducing text Perplexity by 0.35, increasing translation BLEU score by 0.164, and raising mathematical accuracy by 0.67 points. These advancements are achieved alongside a 0.34% higher watermark detection AUC and stronger robustness to attacks, all with a negligible increase in latency. This work enables the traceable and trustworthy deployment of reasoning LLMs in real-world applications.
Abstract:Object hallucination critically undermines the reliability of Multimodal Large Language Models, often stemming from a fundamental failure in cognitive introspection, where models blindly trust linguistic priors over specific visual evidence. Existing mitigations remain limited: contrastive decoding approaches operate superficially without rectifying internal semantic misalignments, while current latent steering methods rely on static vectors that lack instance-specific precision. We introduce Vision-Language Introspection (VLI), a training-free inference framework that simulates a metacognitive self-correction process. VLI first performs Attributive Introspection to diagnose hallucination risks via probabilistic conflict detection and localize the causal visual anchors. It then employs Interpretable Bi-Causal Steering to actively modulate the inference process, dynamically isolating visual evidence from background noise while neutralizing blind confidence through adaptive calibration. VLI achieves state-of-the-art performance on advanced models, reducing object hallucination rates by 12.67% on MMHal-Bench and improving accuracy by 5.8% on POPE.




Abstract:Large language models (LLMs) with Chain-of-Thought (CoT) prompting achieve strong reasoning but often produce unnecessarily long explanations, increasing cost and sometimes reducing accuracy. Fair comparison of efficiency-oriented approaches is hindered by fragmented evaluation practices. We introduce EffiReason-Bench, a unified benchmark for rigorous cross-paradigm evaluation of efficient reasoning methods across three categories: Reasoning Blueprints, Dynamic Execution, and Post-hoc Refinement. To enable step-by-step evaluation, we construct verified CoT annotations for CommonsenseQA and LogiQA via a pipeline that enforces standardized reasoning structures, comprehensive option-wise analysis, and human verification. We evaluate 7 methods across 6 open-source LLMs (1B-70B) on 4 datasets spanning mathematics, commonsense, and logic, and propose the E3-Score, a principled metric inspired by economic trade-off modeling that provides smooth, stable evaluation without discontinuities or heavy reliance on heuristics. Experiments show that no single method universally dominates; optimal strategies depend on backbone scale, task complexity, and architecture.
Abstract:Current Video Large Language Models (VideoLLMs) suffer from quadratic computational complexity and key-value cache scaling, due to their reliance on processing excessive redundant visual tokens. To address this problem, we propose SharpV, a minimalist and efficient method for adaptive pruning of visual tokens and KV cache. Different from most uniform compression approaches, SharpV dynamically adjusts pruning ratios based on spatial-temporal information. Remarkably, this adaptive mechanism occasionally achieves performance gains over dense models, offering a novel paradigm for adaptive pruning. During the KV cache pruning stage, based on observations of visual information degradation, SharpV prunes degraded visual features via a self-calibration manner, guided by similarity to original visual features. In this way, SharpV achieves hierarchical cache pruning from the perspective of information bottleneck, offering a new insight into VideoLLMs' information flow. Experiments on multiple public benchmarks demonstrate the superiority of SharpV. Moreover, to the best of our knowledge, SharpV is notably the first two-stage pruning framework that operates without requiring access to exposed attention scores, ensuring full compatibility with hardware acceleration techniques like Flash Attention.
Abstract:Humans possess spatial reasoning abilities that enable them to understand spaces through multimodal observations, such as vision and sound. Large multimodal reasoning models extend these abilities by learning to perceive and reason, showing promising performance across diverse spatial tasks. However, systematic reviews and publicly available benchmarks for these models remain limited. In this survey, we provide a comprehensive review of multimodal spatial reasoning tasks with large models, categorizing recent progress in multimodal large language models (MLLMs) and introducing open benchmarks for evaluation. We begin by outlining general spatial reasoning, focusing on post-training techniques, explainability, and architecture. Beyond classical 2D tasks, we examine spatial relationship reasoning, scene and layout understanding, as well as visual question answering and grounding in 3D space. We also review advances in embodied AI, including vision-language navigation and action models. Additionally, we consider emerging modalities such as audio and egocentric video, which contribute to novel spatial understanding through new sensors. We believe this survey establishes a solid foundation and offers insights into the growing field of multimodal spatial reasoning. Updated information about this survey, codes and implementation of the open benchmarks can be found at https://github.com/zhengxuJosh/Awesome-Spatial-Reasoning.
Abstract:In an era where AI is evolving from a passive tool into an active and adaptive companion, we introduce AI for Service (AI4Service), a new paradigm that enables proactive and real-time assistance in daily life. Existing AI services remain largely reactive, responding only to explicit user commands. We argue that a truly intelligent and helpful assistant should be capable of anticipating user needs and taking actions proactively when appropriate. To realize this vision, we propose Alpha-Service, a unified framework that addresses two fundamental challenges: Know When to intervene by detecting service opportunities from egocentric video streams, and Know How to provide both generalized and personalized services. Inspired by the von Neumann computer architecture and based on AI glasses, Alpha-Service consists of five key components: an Input Unit for perception, a Central Processing Unit for task scheduling, an Arithmetic Logic Unit for tool utilization, a Memory Unit for long-term personalization, and an Output Unit for natural human interaction. As an initial exploration, we implement Alpha-Service through a multi-agent system deployed on AI glasses. Case studies, including a real-time Blackjack advisor, a museum tour guide, and a shopping fit assistant, demonstrate its ability to seamlessly perceive the environment, infer user intent, and provide timely and useful assistance without explicit prompts.