Abstract:As text generation has become a core capability of modern Large Language Models (LLMs), it underpins a wide range of downstream applications. However, most existing LLMs rely on autoregressive (AR) generation, producing one token at a time based on previously generated context-resulting in limited generation speed due to the inherently sequential nature of the process. To address this challenge, an increasing number of researchers have begun exploring parallel text generation-a broad class of techniques aimed at breaking the token-by-token generation bottleneck and improving inference efficiency. Despite growing interest, there remains a lack of comprehensive analysis on what specific techniques constitute parallel text generation and how they improve inference performance. To bridge this gap, we present a systematic survey of parallel text generation methods. We categorize existing approaches into AR-based and Non-AR-based paradigms, and provide a detailed examination of the core techniques within each category. Following this taxonomy, we assess their theoretical trade-offs in terms of speed, quality, and efficiency, and examine their potential for combination and comparison with alternative acceleration strategies. Finally, based on our findings, we highlight recent advancements, identify open challenges, and outline promising directions for future research in parallel text generation.
Abstract:Artificial intelligence researchers have made significant advances in legal intelligence in recent years. However, the existing studies have not focused on the important value embedded in judgments reversals, which limits the improvement of the efficiency of legal intelligence. In this paper, we propose a causal Framework for Accurately Inferring case Reversals (FAIR), which models the problem of judgments reversals based on real Chinese judgments. We mine the causes of judgments reversals by causal inference methods and inject the obtained causal relationships into the neural network as a priori knowledge. And then, our framework is validated on a challenging dataset as a legal judgment prediction task. The experimental results show that our framework can tap the most critical factors in judgments reversal, and the obtained causal relationships can effectively improve the neural network's performance. In addition, we discuss the generalization ability of large language models for legal intelligence tasks using ChatGPT as an example. Our experiment has found that the generalization ability of large language models still has defects, and mining causal relationships can effectively improve the accuracy and explain ability of model predictions.