Abstract:As contemporary microservice systems become increasingly popular and complex-often comprising hundreds or even thousands of fine-grained, interdependent subsystems-they are experiencing more frequent failures. Ensuring system reliability thus demands accurate root cause localization. While many traditional graph-based and deep learning approaches have been explored for this task, they often rely heavily on pre-defined schemas that struggle to adapt to evolving operational contexts. Consequently, a number of LLM-based methods have recently been proposed. However, these methods still face two major limitations: shallow, symptom-centric reasoning that undermines accuracy, and a lack of cross-alert reuse that leads to redundant reasoning and high latency. In this paper, we conduct a comprehensive study of how Site Reliability Engineers (SREs) localize the root causes of failures, drawing insights from professionals across multiple organizations. Our investigation reveals that expert root cause analysis exhibits three key characteristics: recursiveness, multi-dimensional expansion, and cross-modal reasoning. Motivated by these findings, we introduce AMER-RCL, an agentic memory enhanced recursive reasoning framework for root cause localization in microservices. AMER-RCL employs the Recursive Reasoning RCL engine, a multi-agent framework that performs recursive reasoning on each alert to progressively refine candidate causes, while Agentic Memory incrementally accumulates and reuses reasoning from prior alerts within a time window to reduce redundant exploration and lower inference latency. Experimental results demonstrate that AMER-RCL consistently outperforms state-of-the-art methods in both localization accuracy and inference efficiency.
Abstract:Microservice systems have become the backbone of cloud-native enterprise applications due to their resource elasticity, loosely coupled architecture, and lightweight deployment. Yet, the intrinsic complexity and dynamic runtime interactions of such systems inevitably give rise to anomalies. Ensuring system reliability therefore hinges on effective root cause analysis (RCA), which entails not only localizing the source of anomalies but also characterizing the underlying failures in a timely and interpretable manner. Recent advances in intelligent RCA techniques, particularly those powered by large language models (LLMs), have demonstrated promising capabilities, as LLMs reduce reliance on handcrafted features while offering cross-platform adaptability, task generalization, and flexibility. However, existing LLM-based methods still suffer from two critical limitations: (a) limited exploration diversity, which undermines accuracy, and (b) heavy dependence on large-scale LLMs, which results in slow inference. To overcome these challenges, we propose SpecRCA, a speculative root cause analysis framework for microservices that adopts a \textit{hypothesize-then-verify} paradigm. SpecRCA first leverages a hypothesis drafting module to rapidly generate candidate root causes, and then employs a parallel root cause verifier to efficiently validate them. Preliminary experiments on the AIOps 2022 dataset demonstrate that SpecRCA achieves superior accuracy and efficiency compared to existing approaches, highlighting its potential as a practical solution for scalable and interpretable RCA in complex microservice environments.
Abstract:Autoregressive (AR) generation is the standard decoding paradigm for Large Language Models (LLMs), but its token-by-token nature limits parallelism at inference time. Diffusion Language Models (DLLMs) offer parallel decoding by recovering multiple masked tokens per step; however, in practice they often fail to translate this parallelism into deployment speed gains over optimized AR engines (e.g., vLLM). A key reason is that many DLLMs rely on bidirectional attention, which breaks standard prefix KV caching and forces repeated contextualization, undermining efficiency. We propose WeDLM, a diffusion decoding framework built entirely on standard causal attention to make parallel generation prefix-cache friendly. The core idea is to let each masked position condition on all currently observed tokens while keeping a strict causal mask, achieved by Topological Reordering that moves observed tokens to the physical prefix while preserving their logical positions. Building on this property, we introduce a streaming decoding procedure that continuously commits confident tokens into a growing left-to-right prefix and maintains a fixed parallel workload, avoiding the stop-and-wait behavior common in block diffusion methods. Experiments show that WeDLM preserves the quality of strong AR backbones while delivering substantial speedups, approaching 3x on challenging reasoning benchmarks and up to 10x in low-entropy generation regimes; critically, our comparisons are against AR baselines served by vLLM under matched deployment settings, demonstrating that diffusion-style decoding can outperform an optimized AR engine in practice.
Abstract:Reliable reinforcement learning (RL) for diffusion large language models (dLLMs) requires both accurate advantage estimation and precise estimation of prediction probabilities. Existing RL methods for dLLMs fall short in both aspects: they rely on coarse or unverifiable reward signals, and they estimate prediction probabilities without accounting for the bias relative to the true, unbiased expected prediction probability that properly integrates over all possible decoding orders. To mitigate these issues, we propose \emph{d}-TreeRPO, a reliable RL framework for dLLMs that leverages tree-structured rollouts and bottom-up advantage computation based on verifiable outcome rewards to provide fine-grained and verifiable step-wise reward signals. When estimating the conditional transition probability from a parent node to a child node, we theoretically analyze the estimation error between the unbiased expected prediction probability and the estimate obtained via a single forward pass, and find that higher prediction confidence leads to lower estimation error. Guided by this analysis, we introduce a time-scheduled self-distillation loss during training that enhances prediction confidence in later training stages, thereby enabling more accurate probability estimation and improved convergence. Experiments show that \emph{d}-TreeRPO outperforms existing baselines and achieves significant gains on multiple reasoning benchmarks, including +86.2 on Sudoku, +51.6 on Countdown, +4.5 on GSM8K, and +5.3 on Math500. Ablation studies and computational cost analyses further demonstrate the effectiveness and practicality of our design choices.
Abstract:Log-based anomaly detection is critical for ensuring the stability and reliability of web systems. One of the key problems in this task is the lack of sufficient labeled logs, which limits the rapid deployment in new systems. Existing works usually leverage large-scale labeled logs from a mature web system and a small amount of labeled logs from a new system, using transfer learning to extract and generalize general knowledge across both domains. However, these methods focus solely on the transfer of general knowledge and neglect the disparity and potential mismatch between such knowledge and the proprietary knowledge of target system, thus constraining performance. To address this limitation, we propose FusionLog, a novel zero-label cross-system log-based anomaly detection method that effectively achieves the fusion of general and proprietary knowledge, enabling cross-system generalization without any labeled target logs. Specifically, we first design a training-free router based on semantic similarity that dynamically partitions unlabeled target logs into 'general logs' and 'proprietary logs.' For general logs, FusionLog employs a small model based on system-agnostic representation meta-learning for direct training and inference, inheriting the general anomaly patterns shared between the source and target systems. For proprietary logs, we iteratively generate pseudo-labels and fine-tune the small model using multi-round collaborative knowledge distillation and fusion based on large language model (LLM) and small model (SM) to enhance its capability to recognize anomaly patterns specific to the target system. Experimental results on three public log datasets from different systems show that FusionLog achieves over 90% F1-score under a fully zero-label setting, significantly outperforming state-of-the-art cross-system log-based anomaly detection methods.




Abstract:As text generation has become a core capability of modern Large Language Models (LLMs), it underpins a wide range of downstream applications. However, most existing LLMs rely on autoregressive (AR) generation, producing one token at a time based on previously generated context-resulting in limited generation speed due to the inherently sequential nature of the process. To address this challenge, an increasing number of researchers have begun exploring parallel text generation-a broad class of techniques aimed at breaking the token-by-token generation bottleneck and improving inference efficiency. Despite growing interest, there remains a lack of comprehensive analysis on what specific techniques constitute parallel text generation and how they improve inference performance. To bridge this gap, we present a systematic survey of parallel text generation methods. We categorize existing approaches into AR-based and Non-AR-based paradigms, and provide a detailed examination of the core techniques within each category. Following this taxonomy, we assess their theoretical trade-offs in terms of speed, quality, and efficiency, and examine their potential for combination and comparison with alternative acceleration strategies. Finally, based on our findings, we highlight recent advancements, identify open challenges, and outline promising directions for future research in parallel text generation.




Abstract:Artificial intelligence researchers have made significant advances in legal intelligence in recent years. However, the existing studies have not focused on the important value embedded in judgments reversals, which limits the improvement of the efficiency of legal intelligence. In this paper, we propose a causal Framework for Accurately Inferring case Reversals (FAIR), which models the problem of judgments reversals based on real Chinese judgments. We mine the causes of judgments reversals by causal inference methods and inject the obtained causal relationships into the neural network as a priori knowledge. And then, our framework is validated on a challenging dataset as a legal judgment prediction task. The experimental results show that our framework can tap the most critical factors in judgments reversal, and the obtained causal relationships can effectively improve the neural network's performance. In addition, we discuss the generalization ability of large language models for legal intelligence tasks using ChatGPT as an example. Our experiment has found that the generalization ability of large language models still has defects, and mining causal relationships can effectively improve the accuracy and explain ability of model predictions.