College of Computer and Artificial Intelligence, Zhengzhou University, Institute of Physical Education
Abstract:Energy-based models (EBMs) estimate unnormalized densities in an elegant framework, but they are generally difficult to train. Recent work has linked EBMs to generative adversarial networks, by noting that they can be trained through a minimax game using a variational lower bound. To avoid the instabilities caused by minimizing a lower bound, we propose to instead work with bidirectional bounds, meaning that we maximize a lower bound and minimize an upper bound when training the EBM. We investigate four different bounds on the log-likelihood derived from different perspectives. We derive lower bounds based on the singular values of the generator Jacobian and on mutual information. To upper bound the negative log-likelihood, we consider a gradient penalty-like bound, as well as one based on diffusion processes. In all cases, we provide algorithms for evaluating the bounds. We compare the different bounds to investigate, the pros and cons of the different approaches. Finally, we demonstrate that the use of bidirectional bounds stabilizes EBM training and yields high-quality density estimation and sample generation.
Abstract:Reliable causal inference is essential for making decisions in high-stakes areas like medicine, economics, and public policy. However, it remains unclear whether large language models (LLMs) can handle rigorous and trustworthy statistical causal inference. Current benchmarks usually involve simplified tasks. For example, these tasks might only ask LLMs to identify semantic causal relationships or draw conclusions directly from raw data. As a result, models may overlook important statistical pitfalls, such as Simpson's paradox or selection bias. This oversight limits the applicability of LLMs in the real world. To address these limitations, we propose CausalPitfalls, a comprehensive benchmark designed to rigorously evaluate the capability of LLMs in overcoming common causal inference pitfalls. Our benchmark features structured challenges across multiple difficulty levels, each paired with grading rubrics. This approach allows us to quantitatively measure both causal reasoning capabilities and the reliability of LLMs' responses. We evaluate models using two protocols: (1) direct prompting, which assesses intrinsic causal reasoning, and (2) code-assisted prompting, where models generate executable code for explicit statistical analysis. Additionally, we validate the effectiveness of this judge by comparing its scoring with assessments from human experts. Our results reveal significant limitations in current LLMs when performing statistical causal inference. The CausalPitfalls benchmark provides essential guidance and quantitative metrics to advance the development of trustworthy causal reasoning systems.
Abstract:Adaptive impedance matching between antennas and radio frequency front-end (RFFE) power modules is essential for mobile communication systems. To address the matching performance degradation caused by parasitic effects in practical tunable matching networks (TMN), this paper proposes a purely data-driven adaptive impedance matching method that avoids trial-and-error physical adjustment. First, we propose the residual enhanced circuit behavior modeling network (RECBM-Net), a deep learning model that maps TMN operating states to their scattering parameters (S-parameters). Then, we formulate the matching process based on the trained surrogate model as a mathematical optimization problem. We employ two classic numerical methods with different online computational overhead, namely simulated annealing particle swarm optimization (SAPSO) and adaptive moment estimation with automatic differentiation (AD-Adam), to search for the matching solution. To further reduce the online inference overhead caused by repeated forward propagation through RECBM-Net, we train an inverse mapping solver network (IMS-Net) to directly predict the optimal solution. Simulation results show that RECBM-Net achieves exceptionally high modeling accuracy. While AD-Adam significantly reduces computational overhead compared to SAPSO, it sacrifices slight accuracy. IMS-Net offers the lowest online overhead while maintaining excellent matching accuracy.
Abstract:Reconfigurable robots that can change their physical configuration post-fabrication have demonstrate their potential in adapting to different environments or tasks. However, it is challenging to determine how to optimally adjust reconfigurable parameters for a given task, especially when the controller depends on the robot's configuration. In this paper, we address this problem using a tendon-driven reconfigurable manipulator composed of multiple serially connected origami-inspired modules as an example. Under tendon actuation, these modules can achieve different shapes and motions, governed by joint stiffnesses (reconfiguration parameters) and the tendon displacements (control inputs). We leverage recent advances in co-optimization of design and control for robotic system to treat reconfiguration parameters as design variables and optimize them using reinforcement learning techniques. We first establish a forward model based on the minimum potential energy method to predict the shape of the manipulator under tendon actuations. Using the forward model as the environment dynamics, we then co-optimize the control policy (on the tendon displacements) and joint stiffnesses of the modules for goal reaching tasks while ensuring collision avoidance. Through co-optimization, we obtain optimized joint stiffness and the corresponding optimal control policy to enable the manipulator to accomplish the task that would be infeasible with fixed reconfiguration parameters (i.e., fixed joint stiffness). We envision the co-optimization framework can be extended to other reconfigurable robotic systems, enabling them to optimally adapt their configuration and behavior for diverse tasks and environments.
Abstract:The implementation of the conjugate gradient (CG) method for massive MIMO detection is computationally challenging, especially for a large number of users and correlated channels. In this paper, we propose a low computational complexity CG detection from a finite-precision perspective. First, we develop a finite-precision CG (FP-CG) detection to mitigate the computational bottleneck of each CG iteration and provide the attainable accuracy, convergence, and computational complexity analysis to reveal the impact of finite-precision arithmetic. A practical heuristic is presented to select suitable precisions. Then, to further reduce the number of iterations, we propose a joint finite-precision and block-Jacobi preconditioned CG (FP-BJ-CG) detection. The corresponding performance analysis is also provided. Finally, simulation results validate the theoretical insights and demonstrate the superiority of the proposed detection.
Abstract:We explore the use of Large Language Models (LLMs) for automated assessment of open-text student reflections and prediction of academic performance. Traditional methods for evaluating reflections are time-consuming and may not scale effectively in educational settings. In this work, we employ LLMs to transform student reflections into quantitative scores using two assessment strategies (single-agent and multi-agent) and two prompting techniques (zero-shot and few-shot). Our experiments, conducted on a dataset of 5,278 reflections from 377 students over three academic terms, demonstrate that the single-agent with few-shot strategy achieves the highest match rate with human evaluations. Furthermore, models utilizing LLM-assessed reflection scores outperform baselines in both at-risk student identification and grade prediction tasks. These findings suggest that LLMs can effectively automate reflection assessment, reduce educators' workload, and enable timely support for students who may need additional assistance. Our work emphasizes the potential of integrating advanced generative AI technologies into educational practices to enhance student engagement and academic success.
Abstract:Curvilinear structure segmentation (CSS) is vital in various domains, including medical imaging, landscape analysis, industrial surface inspection, and plant analysis. While existing methods achieve high performance within specific domains, their generalizability is limited. On the other hand, large-scale models such as Segment Anything Model (SAM) exhibit strong generalization but are not optimized for curvilinear structures. Existing adaptations of SAM primarily focus on general object segmentation and lack specialized design for CSS tasks. To bridge this gap, we propose the Universal Curvilinear structure Segmentation (\textit{UCS}) model, which adapts SAM to CSS tasks while enhancing its generalization. \textit{UCS} features a novel encoder architecture integrating a pretrained SAM encoder with two innovations: a Sparse Adapter, strategically inserted to inherit the pre-trained SAM encoder's generalization capability while minimizing the number of fine-tuning parameters, and a Prompt Generation module, which leverages Fast Fourier Transform with a high-pass filter to generate curve-specific prompts. Furthermore, the \textit{UCS} incorporates a mask decoder that eliminates reliance on manual interaction through a dual-compression module: a Hierarchical Feature Compression module, which aggregates the outputs of the sampled encoder to enhance detail preservation, and a Guidance Feature Compression module, which extracts and compresses image-driven guidance features. Evaluated on a comprehensive multi-domain dataset, including an in-house dataset covering eight natural curvilinear structures, \textit{UCS} demonstrates state-of-the-art generalization and open-set segmentation performance across medical, engineering, natural, and plant imagery, establishing a new benchmark for universal CSS.
Abstract:Channel coherence time has been widely regarded as a critical parameter in the design of mobile systems. However, a prominent challenge lies in integrating electromagnetic (EM) polarization effects into the derivation of the channel coherence time. In this paper, we develop a framework to analyze the impact of polarization mismatch on the channel coherence time. Specifically, we first establish an EM channel model to capture the essence of EM wave propagation. Based on this model, we then derive the EM temporal correlation function, incorporating the effects of polarization mismatch and beam misalignment. Further, considering the random orientation of the mobile user equipment (UE), we derive a closed-form solution for the EM coherence time in the turning scenario. When the trajectory degenerates into a straight line, we also provide a closed-form lower bound on the EM coherence time. The simulation results validate our theoretical analysis and reveal that neglecting the EM polarization effects leads to overly optimistic estimates of the EM coherence time.
Abstract:Rapid and efficient assessment of the future impact of research articles is a significant concern for both authors and reviewers. The most common standard for measuring the impact of academic papers is the number of citations. In recent years, numerous efforts have been undertaken to predict citation counts within various citation windows. However, most of these studies focus solely on a specific academic field or require early citation counts for prediction, rendering them impractical for the early-stage evaluation of papers. In this work, we harness Scopus to curate a significantly comprehensive and large-scale dataset of information from 69707 scientific articles sourced from 99 journals spanning multiple disciplines. We propose a deep learning methodology for the impact-based classification tasks, which leverages semantic features extracted from the manuscripts and paper metadata. To summarize the semantic features, such as titles and abstracts, we employ a Transformer-based language model to encode semantic features and design a text fusion layer to capture shared information between titles and abstracts. We specifically focus on the following impact-based prediction tasks using information of scientific manuscripts in pre-publication stage: (1) The impact of journals in which the manuscripts will be published. (2) The future impact of manuscripts themselves. Extensive experiments on our datasets demonstrate the superiority of our proposed model for impact-based prediction tasks. We also demonstrate potentials in generating manuscript's feedback and improvement suggestions.
Abstract:The high computational complexity of the multiple signal classification (MUSIC) algorithm is mainly caused by the subspace decomposition and spectrum search, especially for frequent real-time applications or massive sensors. In this paper, we propose a low-complexity MUSIC algorithm from finite-precision arithmetic perspective. First, we analyze the computational bottlenecks of the classic low-complexity randomized unitary-based MUSIC (RU-MUSIC), formulating this computational issue as an inner product problem. Then, a mixed-precision method is introduced to address this problem. Specifically, this method partitions summations in inner products into blocks, where intra-block computations use low-precision arithmetic and inter-block sums use high-precision arithmetic. To further improve computational accuracy, we develop an adaptive-precision method that supports adaptive block sizes and multiple precision levels. Finally, simulation results show that the proposed finite-precision MUSIC design achieves direction-of-arrival (DOA) estimation performance similar to that using full-precision arithmetic while reducing more than 50\% computational cost.