Alert button
Picture for Li Chen

Li Chen

Alert button

Decision Fusion Network with Perception Fine-tuning for Defect Classification

Sep 22, 2023
Xiaoheng Jiang, Shilong Tian, Zhiwen Zhu, Yang Lu, Hao Liu, Li Chen, Shupan Li, Mingliang Xu

Surface defect inspection is an important task in industrial inspection. Deep learning-based methods have demonstrated promising performance in this domain. Nevertheless, these methods still suffer from misjudgment when encountering challenges such as low-contrast defects and complex backgrounds. To overcome these issues, we present a decision fusion network (DFNet) that incorporates the semantic decision with the feature decision to strengthen the decision ability of the network. In particular, we introduce a decision fusion module (DFM) that extracts a semantic vector from the semantic decision branch and a feature vector for the feature decision branch and fuses them to make the final classification decision. In addition, we propose a perception fine-tuning module (PFM) that fine-tunes the foreground and background during the segmentation stage. PFM generates the semantic and feature outputs that are sent to the classification decision stage. Furthermore, we present an inner-outer separation weight matrix to address the impact of label edge uncertainty during segmentation supervision. Our experimental results on the publicly available datasets including KolektorSDD2 (96.1% AP) and Magnetic-tile-defect-datasets (94.6% mAP) demonstrate the effectiveness of the proposed method.

Viaarxiv icon

MMST-ViT: Climate Change-aware Crop Yield Prediction via Multi-Modal Spatial-Temporal Vision Transformer

Sep 19, 2023
Fudong Lin, Summer Crawford, Kaleb Guillot, Yihe Zhang, Yan Chen, Xu Yuan, Li Chen, Shelby Williams, Robert Minvielle, Xiangming Xiao, Drew Gholson, Nicolas Ashwell, Tri Setiyono, Brenda Tubana, Lu Peng, Magdy Bayoumi, Nian-Feng Tzeng

Precise crop yield prediction provides valuable information for agricultural planning and decision-making processes. However, timely predicting crop yields remains challenging as crop growth is sensitive to growing season weather variation and climate change. In this work, we develop a deep learning-based solution, namely Multi-Modal Spatial-Temporal Vision Transformer (MMST-ViT), for predicting crop yields at the county level across the United States, by considering the effects of short-term meteorological variations during the growing season and the long-term climate change on crops. Specifically, our MMST-ViT consists of a Multi-Modal Transformer, a Spatial Transformer, and a Temporal Transformer. The Multi-Modal Transformer leverages both visual remote sensing data and short-term meteorological data for modeling the effect of growing season weather variations on crop growth. The Spatial Transformer learns the high-resolution spatial dependency among counties for accurate agricultural tracking. The Temporal Transformer captures the long-range temporal dependency for learning the impact of long-term climate change on crops. Meanwhile, we also devise a novel multi-modal contrastive learning technique to pre-train our model without extensive human supervision. Hence, our MMST-ViT captures the impacts of both short-term weather variations and long-term climate change on crops by leveraging both satellite images and meteorological data. We have conducted extensive experiments on over 200 counties in the United States, with the experimental results exhibiting that our MMST-ViT outperforms its counterparts under three performance metrics of interest.

* ICCV 2023  
Viaarxiv icon

An Empirical Study of NetOps Capability of Pre-Trained Large Language Models

Sep 19, 2023
Yukai Miao, Yu Bai, Li Chen, Dan Li, Haifeng Sun, Xizheng Wang, Ziqiu Luo, Yanyu Ren, Dapeng Sun, Xiuting Xu, Qi Zhang, Chao Xiang, Xinchi Li

Nowadays, the versatile capabilities of Pre-trained Large Language Models (LLMs) have attracted much attention from the industry. However, some vertical domains are more interested in the in-domain capabilities of LLMs. For the Networks domain, we present NetEval, an evaluation set for measuring the comprehensive capabilities of LLMs in Network Operations (NetOps). NetEval is designed for evaluating the commonsense knowledge and inference ability in NetOps in a multi-lingual context. NetEval consists of 5,732 questions about NetOps, covering five different sub-domains of NetOps. With NetEval, we systematically evaluate the NetOps capability of 26 publicly available LLMs. The results show that only GPT-4 can achieve a performance competitive to humans. However, some open models like LLaMA 2 demonstrate significant potential.

Viaarxiv icon

PhotoVerse: Tuning-Free Image Customization with Text-to-Image Diffusion Models

Sep 11, 2023
Li Chen, Mengyi Zhao, Yiheng Liu, Mingxu Ding, Yangyang Song, Shizun Wang, Xu Wang, Hao Yang, Jing Liu, Kang Du, Min Zheng

Personalized text-to-image generation has emerged as a powerful and sought-after tool, empowering users to create customized images based on their specific concepts and prompts. However, existing approaches to personalization encounter multiple challenges, including long tuning times, large storage requirements, the necessity for multiple input images per identity, and limitations in preserving identity and editability. To address these obstacles, we present PhotoVerse, an innovative methodology that incorporates a dual-branch conditioning mechanism in both text and image domains, providing effective control over the image generation process. Furthermore, we introduce facial identity loss as a novel component to enhance the preservation of identity during training. Remarkably, our proposed PhotoVerse eliminates the need for test time tuning and relies solely on a single facial photo of the target identity, significantly reducing the resource cost associated with image generation. After a single training phase, our approach enables generating high-quality images within only a few seconds. Moreover, our method can produce diverse images that encompass various scenes and styles. The extensive evaluation demonstrates the superior performance of our approach, which achieves the dual objectives of preserving identity and facilitating editability. Project page: https://photoverse2d.github.io/

Viaarxiv icon

Large Language Models for Generative Recommendation: A Survey and Visionary Discussions

Sep 03, 2023
Lei Li, Yongfeng Zhang, Dugang Liu, Li Chen

Figure 1 for Large Language Models for Generative Recommendation: A Survey and Visionary Discussions
Figure 2 for Large Language Models for Generative Recommendation: A Survey and Visionary Discussions
Figure 3 for Large Language Models for Generative Recommendation: A Survey and Visionary Discussions

Recent years have witnessed the wide adoption of large language models (LLM) in different fields, especially natural language processing and computer vision. Such a trend can also be observed in recommender systems (RS). However, most of related work treat LLM as a component of the conventional recommendation pipeline (e.g., as a feature extractor) which may not be able to fully leverage the generative power of LLM. Instead of separating the recommendation process into multiple stages such as score computation and re-ranking, this process can be simplified to one stage with LLM: directly generating recommendations from the complete pool of items. This survey reviews the progress, methods and future directions of LLM-based generative recommendation by examining three questions: 1) What generative recommendation is, 2) Why RS should advance to generative recommendation, and 3) How to implement LLM-based generative recommendation for various RS tasks. We hope that the survey can provide the context and guidance needed to explore this interesting and emerging topic.

Viaarxiv icon

Dynamic landslide susceptibility mapping over recent three decades to uncover variations in landslide causes in subtropical urban mountainous areas

Aug 23, 2023
Peifeng Ma, Li Chen, Chang Yu, Qing Zhu, Yulin Ding

Figure 1 for Dynamic landslide susceptibility mapping over recent three decades to uncover variations in landslide causes in subtropical urban mountainous areas
Figure 2 for Dynamic landslide susceptibility mapping over recent three decades to uncover variations in landslide causes in subtropical urban mountainous areas
Figure 3 for Dynamic landslide susceptibility mapping over recent three decades to uncover variations in landslide causes in subtropical urban mountainous areas
Figure 4 for Dynamic landslide susceptibility mapping over recent three decades to uncover variations in landslide causes in subtropical urban mountainous areas

Landslide susceptibility assessment (LSA) is of paramount importance in mitigating landslide risks. Recently, there has been a surge in the utilization of data-driven methods for predicting landslide susceptibility due to the growing availability of aerial and satellite data. Nonetheless, the rapid oscillations within the landslide-inducing environment (LIE), primarily due to significant changes in external triggers such as rainfall, pose difficulties for contemporary data-driven LSA methodologies to accommodate LIEs over diverse timespans. This study presents dynamic landslide susceptibility mapping that simply employs multiple predictive models for annual LSA. In practice, this will inevitably encounter small sample problems due to the limited number of landslide samples in certain years. Another concern arises owing to the majority of the existing LSA approaches train black-box models to fit distinct datasets, yet often failing in generalization and providing comprehensive explanations concerning the interactions between input features and predictions. Accordingly, we proposed to meta-learn representations with fast adaptation ability using a few samples and gradient updates; and apply SHAP for each model interpretation and landslide feature permutation. Additionally, we applied MT-InSAR for LSA result enhancement and validation. The chosen study area is Lantau Island, Hong Kong, where we conducted a comprehensive dynamic LSA spanning from 1992 to 2019. The model interpretation results demonstrate that the primary factors responsible for triggering landslides in Lantau Island are terrain slope and extreme rainfall. The results also indicate that the variation in landslide causes can be primarily attributed to extreme rainfall events, which result from global climate change, and the implementation of the Landslip Prevention and Mitigation Programme (LPMitP) by the Hong Kong government.

Viaarxiv icon

Augmented Negative Sampling for Collaborative Filtering

Aug 11, 2023
Yuhan Zhao, Rui Chen, Riwei Lai, Qilong Han, Hongtao Song, Li Chen

Figure 1 for Augmented Negative Sampling for Collaborative Filtering
Figure 2 for Augmented Negative Sampling for Collaborative Filtering
Figure 3 for Augmented Negative Sampling for Collaborative Filtering
Figure 4 for Augmented Negative Sampling for Collaborative Filtering

Negative sampling is essential for implicit-feedback-based collaborative filtering, which is used to constitute negative signals from massive unlabeled data to guide supervised learning. The state-of-the-art idea is to utilize hard negative samples that carry more useful information to form a better decision boundary. To balance efficiency and effectiveness, the vast majority of existing methods follow the two-pass approach, in which the first pass samples a fixed number of unobserved items by a simple static distribution and then the second pass selects the final negative items using a more sophisticated negative sampling strategy. However, selecting negative samples from the original items is inherently restricted, and thus may not be able to contrast positive samples well. In this paper, we confirm this observation via experiments and introduce two limitations of existing solutions: ambiguous trap and information discrimination. Our response to such limitations is to introduce augmented negative samples. This direction renders a substantial technical challenge because constructing unconstrained negative samples may introduce excessive noise that distorts the decision boundary. To this end, we introduce a novel generic augmented negative sampling paradigm and provide a concrete instantiation. First, we disentangle hard and easy factors of negative items. Next, we generate new candidate negative samples by augmenting only the easy factors in a regulated manner: the direction and magnitude of the augmentation are carefully calibrated. Finally, we design an advanced negative sampling strategy to identify the final augmented negative samples, which considers not only the score function used in existing methods but also a new metric called augmentation gain. Extensive experiments on real-world datasets demonstrate that our method significantly outperforms state-of-the-art baselines.

* 11 pages, 16 figures, 
Viaarxiv icon

Weakly Semi-Supervised Detection in Lung Ultrasound Videos

Aug 08, 2023
Jiahong Ouyang, Li Chen, Gary Y. Li, Naveen Balaraju, Shubham Patil, Courosh Mehanian, Sourabh Kulhare, Rachel Millin, Kenton W. Gregory, Cynthia R. Gregory, Meihua Zhu, David O. Kessler, Laurie Malia, Almaz Dessie, Joni Rabiner, Di Coneybeare, Bo Shopsin, Andrew Hersh, Cristian Madar, Jeffrey Shupp, Laura S. Johnson, Jacob Avila, Kristin Dwyer, Peter Weimersheimer, Balasundar Raju, Jochen Kruecker, Alvin Chen

Frame-by-frame annotation of bounding boxes by clinical experts is often required to train fully supervised object detection models on medical video data. We propose a method for improving object detection in medical videos through weak supervision from video-level labels. More concretely, we aggregate individual detection predictions into video-level predictions and extend a teacher-student training strategy to provide additional supervision via a video-level loss. We also introduce improvements to the underlying teacher-student framework, including methods to improve the quality of pseudo-labels based on weak supervision and adaptive schemes to optimize knowledge transfer between the student and teacher networks. We apply this approach to the clinically important task of detecting lung consolidations (seen in respiratory infections such as COVID-19 pneumonia) in medical ultrasound videos. Experiments reveal that our framework improves detection accuracy and robustness compared to baseline semi-supervised models, and improves efficiency in data and annotation usage.

* IPMI 2023 
Viaarxiv icon

AvatarVerse: High-quality & Stable 3D Avatar Creation from Text and Pose

Aug 07, 2023
Huichao Zhang, Bowen Chen, Hao Yang, Liao Qu, Xu Wang, Li Chen, Chao Long, Feida Zhu, Kang Du, Min Zheng

Figure 1 for AvatarVerse: High-quality & Stable 3D Avatar Creation from Text and Pose
Figure 2 for AvatarVerse: High-quality & Stable 3D Avatar Creation from Text and Pose
Figure 3 for AvatarVerse: High-quality & Stable 3D Avatar Creation from Text and Pose
Figure 4 for AvatarVerse: High-quality & Stable 3D Avatar Creation from Text and Pose

Creating expressive, diverse and high-quality 3D avatars from highly customized text descriptions and pose guidance is a challenging task, due to the intricacy of modeling and texturing in 3D that ensure details and various styles (realistic, fictional, etc). We present AvatarVerse, a stable pipeline for generating expressive high-quality 3D avatars from nothing but text descriptions and pose guidance. In specific, we introduce a 2D diffusion model conditioned on DensePose signal to establish 3D pose control of avatars through 2D images, which enhances view consistency from partially observed scenarios. It addresses the infamous Janus Problem and significantly stablizes the generation process. Moreover, we propose a progressive high-resolution 3D synthesis strategy, which obtains substantial improvement over the quality of the created 3D avatars. To this end, the proposed AvatarVerse pipeline achieves zero-shot 3D modeling of 3D avatars that are not only more expressive, but also in higher quality and fidelity than previous works. Rigorous qualitative evaluations and user studies showcase AvatarVerse's superiority in synthesizing high-fidelity 3D avatars, leading to a new standard in high-quality and stable 3D avatar creation. Our project page is: https://avatarverse3d.github.io

Viaarxiv icon