Abstract:Fine-grained image classification has witnessed significant advancements with the advent of deep learning and computer vision technologies. However, the scarcity of detailed annotations remains a major challenge, especially in scenarios where obtaining high-quality labeled data is costly or time-consuming. To address this limitation, we introduce Precision-Enhanced Pseudo-Labeling(PEPL) approach specifically designed for fine-grained image classification within a semi-supervised learning framework. Our method leverages the abundance of unlabeled data by generating high-quality pseudo-labels that are progressively refined through two key phases: initial pseudo-label generation and semantic-mixed pseudo-label generation. These phases utilize Class Activation Maps (CAMs) to accurately estimate the semantic content and generate refined labels that capture the essential details necessary for fine-grained classification. By focusing on semantic-level information, our approach effectively addresses the limitations of standard data augmentation and image-mixing techniques in preserving critical fine-grained features. We achieve state-of-the-art performance on benchmark datasets, demonstrating significant improvements over existing semi-supervised strategies, with notable boosts in accuracy and robustness.Our code has been open sourced at https://github.com/TianSuya/SemiFG.
Abstract:The primary goal of traffic accident anticipation is to foresee potential accidents in real time using dashcam videos, a task that is pivotal for enhancing the safety and reliability of autonomous driving technologies. In this study, we introduce an innovative framework, AccNet, which significantly advances the prediction capabilities beyond the current state-of-the-art (SOTA) 2D-based methods by incorporating monocular depth cues for sophisticated 3D scene modeling. Addressing the prevalent challenge of skewed data distribution in traffic accident datasets, we propose the Binary Adaptive Loss for Early Anticipation (BA-LEA). This novel loss function, together with a multi-task learning strategy, shifts the focus of the predictive model towards the critical moments preceding an accident. {We rigorously evaluate the performance of our framework on three benchmark datasets--Dashcam Accident Dataset (DAD), Car Crash Dataset (CCD), and AnAn Accident Detection (A3D), and DADA-2000 Dataset--demonstrating its superior predictive accuracy through key metrics such as Average Precision (AP) and mean Time-To-Accident (mTTA).
Abstract:Time series forecasting has become an increasingly popular research area due to its critical applications in various real-world domains such as traffic management, weather prediction, and financial analysis. Despite significant advancements, existing models face notable challenges, including the necessity of manual hyperparameter tuning for different datasets, and difficulty in effectively distinguishing signal from redundant features in data characterized by strong seasonality. These issues hinder the generalization and practical application of time series forecasting models. To solve this issues, we propose an innovative time series forecasting model TimeSieve designed to address these challenges. Our approach employs wavelet transforms to preprocess time series data, effectively capturing multi-scale features without the need for additional parameters or manual hyperparameter tuning. Additionally, we introduce the information bottleneck theory that filters out redundant features from both detail and approximation coefficients, retaining only the most predictive information. This combination reduces significantly improves the model's accuracy. Extensive experiments demonstrate that our model outperforms existing state-of-the-art methods on 70\% of the datasets, achieving higher predictive accuracy and better generalization across diverse datasets. Our results validate the effectiveness of our approach in addressing the key challenges in time series forecasting, paving the way for more reliable and efficient predictive models in practical applications. The code for our model is available at https://github.com/xll0328/TimeSieve.
Abstract:The field of time series forecasting has garnered significant attention in recent years, prompting the development of advanced models like TimeSieve, which demonstrates impressive performance. However, an analysis reveals certain unfaithfulness issues, including high sensitivity to random seeds and minute input noise perturbations. Recognizing these challenges, we embark on a quest to define the concept of \textbf{\underline{F}aithful \underline{T}ime\underline{S}ieve \underline{(FTS)}}, a model that consistently delivers reliable and robust predictions. To address these issues, we propose a novel framework aimed at identifying and rectifying unfaithfulness in TimeSieve. Our framework is designed to enhance the model's stability and resilience, ensuring that its outputs are less susceptible to the aforementioned factors. Experimentation validates the effectiveness of our proposed framework, demonstrating improved faithfulness in the model's behavior. Looking forward, we plan to expand our experimental scope to further validate and optimize our algorithm, ensuring comprehensive faithfulness across a wide range of scenarios. Ultimately, we aspire to make this framework can be applied to enhance the faithfulness of not just TimeSieve but also other state-of-the-art temporal methods, thereby contributing to the reliability and robustness of temporal modeling as a whole.
Abstract:The study of complex networks has significantly advanced our understanding of community structures which serves as a crucial feature of real-world graphs. Detecting communities in graphs is a challenging problem with applications in sociology, biology, and computer science. Despite the efforts of an interdisciplinary community of scientists, a satisfactory solution to this problem has not yet been achieved. This review article delves into the topic of community detection in graphs, which serves as a crucial role in understanding the organization and functioning of complex systems. We begin by introducing the concept of community structure, which refers to the arrangement of vertices into clusters, with strong internal connections and weaker connections between clusters. Then, we provide a thorough exposition of various community detection methods, including a new method designed by us. Additionally, we explore real-world applications of community detection in diverse networks. In conclusion, this comprehensive review provides a deep understanding of community detection in graphs. It serves as a valuable resource for researchers and practitioners in multiple disciplines, offering insights into the challenges, methodologies, and applications of community detection in complex networks.
Abstract:The task of determining crime types based on criminal behavior facts has become a very important and meaningful task in social science. But the problem facing the field now is that the data samples themselves are unevenly distributed, due to the nature of the crime itself. At the same time, data sets in the judicial field are less publicly available, and it is not practical to produce large data sets for direct training. This article proposes a new training model to solve this problem through NLP processing methods. We first propose a Crime Fact Data Preprocessing Module (CFDPM), which can balance the defects of uneven data set distribution by generating new samples. Then we use a large open source dataset (CAIL-big) as our pretraining dataset and a small dataset collected by ourselves for Fine-tuning, giving it good generalization ability to unfamiliar small datasets. At the same time, we use the improved Bert model with dynamic masking to improve the model. Experiments show that the proposed method achieves state-of-the-art results on the present dataset. At the same time, the effectiveness of module CFDPM is proved by experiments. This article provides a valuable methodology contribution for classifying social science texts such as criminal behaviors. Extensive experiments on public benchmarks show that the proposed method achieves new state-of-the-art results.
Abstract:Car detection, particularly through camera vision, has become a major focus in the field of computer vision and has gained widespread adoption. While current car detection systems are capable of good detection, reliable detection can still be challenging due to factors such as proximity between the car, light intensity, and environmental visibility. To address these issues, we propose cross-domain Car Detection Model with integrated convolutional block Attention mechanism(CDMA) that we apply to car recognition for autonomous driving and other areas. CDMA includes several novelties: 1)Building a complete cross-domain target detection framework. 2)Developing an unpaired target domain picture generation module with an integrated convolutional attention mechanism which specifically emphasizes the car headlights feature. 3)Adopting Generalized Intersection over Union (GIOU) as the loss function of the target detection framework. 4)Designing an object detection model integrated with two-headed Convolutional Block Attention Module(CBAM). 5)Utilizing an effective data enhancement method. To evaluate the model's effectiveness, we performed a reduced will resolution process on the data in the SSLAD dataset and used it as the benchmark dataset for our task. Experimental results show that the performance of the cross-domain car target detection model improves by 40% over the model without our framework, and our improvements have a significant impact on cross-domain car recognition.
Abstract:Designing an effective representation learning method for multimodal sentiment analysis tasks is a crucial research direction. The challenge lies in learning both shared and private information in a complete modal representation, which is difficult with uniform multimodal labels and a raw feature fusion approach. In this work, we propose a deep modal shared information learning module based on the covariance matrix to capture the shared information between modalities. Additionally, we use a label generation module based on a self-supervised learning strategy to capture the private information of the modalities. Our module is plug-and-play in multimodal tasks, and by changing the parameterization, it can adjust the information exchange relationship between the modes and learn the private or shared information between the specified modes. We also employ a multi-task learning strategy to help the model focus its attention on the modal differentiation training data. We provide a detailed formulation derivation and feasibility proof for the design of the deep modal shared information learning module. We conduct extensive experiments on three common multimodal sentiment analysis baseline datasets, and the experimental results validate the reliability of our model. Furthermore, we explore more combinatorial techniques for the use of the module. Our approach outperforms current state-of-the-art methods on most of the metrics of the three public datasets.
Abstract:Multimodal sentiment analysis has become an important research area in the field of artificial intelligence. With the latest advances in deep learning, this technology has reached new heights. It has great potential for both application and research, making it a popular research topic. This review provides an overview of the definition, background, and development of multimodal sentiment analysis. It also covers recent datasets and advanced models, emphasizing the challenges and future prospects of this technology. Finally, it looks ahead to future research directions. It should be noted that this review provides constructive suggestions for promising research directions and building better performing multimodal sentiment analysis models, which can help researchers in this field.