Abstract:Transparency is a paramount concern in the medical field, prompting researchers to delve into the realm of explainable AI (XAI). Among these XAI methods, Concept Bottleneck Models (CBMs) aim to restrict the model's latent space to human-understandable high-level concepts by generating a conceptual layer for extracting conceptual features, which has drawn much attention recently. However, existing methods rely solely on concept features to determine the model's predictions, which overlook the intrinsic feature embeddings within medical images. To address this utility gap between the original models and concept-based models, we propose Vision Concept Transformer (VCT). Furthermore, despite their benefits, CBMs have been found to negatively impact model performance and fail to provide stable explanations when faced with input perturbations, which limits their application in the medical field. To address this faithfulness issue, this paper further proposes the Stable Vision Concept Transformer (SVCT) based on VCT, which leverages the vision transformer (ViT) as its backbone and incorporates a conceptual layer. SVCT employs conceptual features to enhance decision-making capabilities by fusing them with image features and ensures model faithfulness through the integration of Denoised Diffusion Smoothing. Comprehensive experiments on four medical datasets demonstrate that our VCT and SVCT maintain accuracy while remaining interpretable compared to baselines. Furthermore, even when subjected to perturbations, our SVCT model consistently provides faithful explanations, thus meeting the needs of the medical field.
Abstract:Irregular Multivariate Time Series (IMTS) forecasting is challenging due to the unaligned nature of multi-channel signals and the prevalence of extensive missing data. Existing methods struggle to capture reliable temporal patterns from such data due to significant missing values. While pre-trained foundation models show potential for addressing these challenges, they are typically designed for Regularly Sampled Time Series (RTS). Motivated by the visual Mask AutoEncoder's (MAE) powerful capability for modeling sparse multi-channel information and its success in RTS forecasting, we propose VIMTS, a framework adapting Visual MAE for IMTS forecasting. To mitigate the effect of missing values, VIMTS first processes IMTS along the timeline into feature patches at equal intervals. These patches are then complemented using learned cross-channel dependencies. Then it leverages visual MAE's capability in handling sparse multichannel data for patch reconstruction, followed by a coarse-to-fine technique to generate precise predictions from focused contexts. In addition, we integrate self-supervised learning for improved IMTS modeling by adapting the visual MAE to IMTS data. Extensive experiments demonstrate VIMTS's superior performance and few-shot capability, advancing the application of visual foundation models in more general time series tasks. Our code is available at https://github.com/WHU-HZY/VIMTS.
Abstract:Accurate trajectory prediction has long been a major challenge for autonomous driving (AD). Traditional data-driven models predominantly rely on statistical correlations, often overlooking the causal relationships that govern traffic behavior. In this paper, we introduce a novel trajectory prediction framework that leverages causal inference to enhance predictive robustness, generalization, and accuracy. By decomposing the environment into spatial and temporal components, our approach identifies and mitigates spurious correlations, uncovering genuine causal relationships. We also employ a progressive fusion strategy to integrate multimodal information, simulating human-like reasoning processes and enabling real-time inference. Evaluations on five real-world datasets--ApolloScape, nuScenes, NGSIM, HighD, and MoCAD--demonstrate our model's superiority over existing state-of-the-art (SOTA) methods, with improvements in key metrics such as RMSE and FDE. Our findings highlight the potential of causal reasoning to transform trajectory prediction, paving the way for robust AD systems.
Abstract:In real-world time series forecasting, uncertainty and lack of reliable evaluation pose significant challenges. Notably, forecasting errors often arise from underfitting in-distribution data and failing to handle out-of-distribution inputs. To enhance model reliability, we introduce a dual rejection mechanism combining ambiguity and novelty rejection. Ambiguity rejection, using prediction error variance, allows the model to abstain under low confidence, assessed through historical error variance analysis without future ground truth. Novelty rejection, employing Variational Autoencoders and Mahalanobis distance, detects deviations from training data. This dual approach improves forecasting reliability in dynamic environments by reducing errors and adapting to data changes, advancing reliability in complex scenarios.
Abstract:Immunohistochemistry (IHC) staining plays a significant role in the evaluation of diseases such as breast cancer. The H&E-to-IHC transformation based on generative models provides a simple and cost-effective method for obtaining IHC images. Although previous models can perform digital coloring well, they still suffer from (i) coloring only through the pixel features that are not prominent in HE, which is easy to cause information loss in the coloring process; (ii) The lack of pixel-perfect H&E-IHC groundtruth pairs poses a challenge to the classical L1 loss.To address the above challenges, we propose an adaptive information enhanced coloring framework based on feature extractors. We first propose the VMFE module to effectively extract the color information features using multi-scale feature extraction and wavelet transform convolution, while combining the shared decoder for feature fusion. The high-performance dual feature extractor of H&E-IHC is trained by contrastive learning, which can effectively perform feature alignment of HE-IHC in high latitude space. At the same time, the trained feature encoder is used to enhance the features and adaptively adjust the loss in the HE section staining process to solve the problems related to unclear and asymmetric information. We have tested on different datasets and achieved excellent performance.Our code is available at https://github.com/babyinsunshine/CEFF
Abstract:With the rapid development of wireless communication technology, the efficient utilization of spectrum resources, optimization of communication quality, and intelligent communication have become critical. Radio map reconstruction is essential for enabling advanced applications, yet challenges such as complex signal propagation and sparse data hinder accurate reconstruction. To address these issues, we propose the **Radio Map Diffusion Model (RMDM)**, a physics-informed framework that integrates **Physics-Informed Neural Networks (PINNs)** to incorporate constraints like the **Helmholtz equation**. RMDM employs a dual U-Net architecture: the first ensures physical consistency by minimizing PDE residuals, boundary conditions, and source constraints, while the second refines predictions via diffusion-based denoising. By leveraging physical laws, RMDM significantly enhances accuracy, robustness, and generalization. Experiments demonstrate that RMDM outperforms state-of-the-art methods, achieving **NMSE of 0.0031** and **RMSE of 0.0125** under the Static RM (SRM) setting, and **NMSE of 0.0047** and **RMSE of 0.0146** under the Dynamic RM (DRM) setting. These results establish a novel paradigm for integrating physics-informed and data-driven approaches in radio map reconstruction, particularly under sparse data conditions.
Abstract:Rapid progress in text-to-motion generation has been largely driven by diffusion models. However, existing methods focus solely on temporal modeling, thereby overlooking frequency-domain analysis. We identify two key phases in motion denoising: the **semantic planning stage** and the **fine-grained improving stage**. To address these phases effectively, we propose **Fre**quency **e**nhanced **t**ext-**to**-**m**otion diffusion model (**Free-T2M**), incorporating stage-specific consistency losses that enhance the robustness of static features and improve fine-grained accuracy. Extensive experiments demonstrate the effectiveness of our method. Specifically, on StableMoFusion, our method reduces the FID from **0.189** to **0.051**, establishing a new SOTA performance within the diffusion architecture. These findings highlight the importance of incorporating frequency-domain insights into text-to-motion generation for more precise and robust results.
Abstract:While deep learning has made remarkable progress in recent years, models continue to struggle with catastrophic forgetting when processing continuously incoming data. This issue is particularly critical in continual learning, where the balance between retaining prior knowledge and adapting to new information-known as the stability-plasticity dilemma-remains a significant challenge. In this paper, we propose SegACIL, a novel continual learning method for semantic segmentation based on a linear closed-form solution. Unlike traditional methods that require multiple epochs for training, SegACIL only requires a single epoch, significantly reducing computational costs. Furthermore, we provide a theoretical analysis demonstrating that SegACIL achieves performance on par with joint learning, effectively retaining knowledge from previous data which makes it to keep both stability and plasticity at the same time. Extensive experiments on the Pascal VOC2012 dataset show that SegACIL achieves superior performance in the sequential, disjoint, and overlap settings, offering a robust solution to the challenges of class-incremental semantic segmentation. Code is available at https://github.com/qwrawq/SegACIL.
Abstract:Concept Bottleneck Models (CBMs) enhance model interpretability by introducing human-understandable concepts within the architecture. However, existing CBMs assume static datasets, limiting their ability to adapt to real-world, continuously evolving data streams. To address this, we define a novel concept-incremental and class-incremental continual learning task for CBMs, enabling models to accumulate new concepts and classes over time while retaining previously learned knowledge. To achieve this, we propose CONceptual Continual Incremental Learning (CONCIL), a framework that prevents catastrophic forgetting by reformulating concept and decision layer updates as linear regression problems, thus eliminating the need for gradient-based updates. CONCIL requires only recursive matrix operations, making it computationally efficient and suitable for real-time and large-scale data applications. Experimental results demonstrate that CONCIL achieves "absolute knowledge memory" and outperforms traditional CBM methods in concept- and class-incremental settings, establishing a new benchmark for continual learning in CBMs.
Abstract:The increasing complexity of AI models, especially in deep learning, has raised concerns about transparency and accountability, particularly in high-stakes applications like medical diagnostics, where opaque models can undermine trust. Explainable Artificial Intelligence (XAI) aims to address these issues by providing clear, interpretable models. Among XAI techniques, Concept Bottleneck Models (CBMs) enhance transparency by using high-level semantic concepts. However, CBMs are vulnerable to concept-level backdoor attacks, which inject hidden triggers into these concepts, leading to undetectable anomalous behavior. To address this critical security gap, we introduce ConceptGuard, a novel defense framework specifically designed to protect CBMs from concept-level backdoor attacks. ConceptGuard employs a multi-stage approach, including concept clustering based on text distance measurements and a voting mechanism among classifiers trained on different concept subgroups, to isolate and mitigate potential triggers. Our contributions are threefold: (i) we present ConceptGuard as the first defense mechanism tailored for concept-level backdoor attacks in CBMs; (ii) we provide theoretical guarantees that ConceptGuard can effectively defend against such attacks within a certain trigger size threshold, ensuring robustness; and (iii) we demonstrate that ConceptGuard maintains the high performance and interpretability of CBMs, crucial for trustworthiness. Through comprehensive experiments and theoretical proofs, we show that ConceptGuard significantly enhances the security and trustworthiness of CBMs, paving the way for their secure deployment in critical applications.