Abstract:Automatic sleep staging plays a vital role in assessing sleep quality and diagnosing sleep disorders. Most existing methods rely heavily on long and continuous EEG recordings, which poses significant challenges for data acquisition in resource-constrained systems, such as wearable or home-based monitoring systems. In this paper, we propose the task of resource-efficient sleep staging, which aims to reduce the amount of signal collected per sleep epoch while maintaining reliable classification performance. To solve this task, we adopt the masking and prompt learning strategy and propose a novel framework called Mask-Aware Sleep Staging (MASS). Specifically, we design a multi-level masking strategy to promote effective feature modeling under partial and irregular observations. To mitigate the loss of contextual information introduced by masking, we further propose a hierarchical prompt learning mechanism that aggregates unmasked data into a global prompt, serving as a semantic anchor for guiding both patch-level and epoch-level feature modeling. MASS is evaluated on four datasets, demonstrating state-of-the-art performance, especially when the amount of data is very limited. This result highlights its potential for efficient and scalable deployment in real-world low-resource sleep monitoring environments.
Abstract:As machine learning (ML) applications grow increasingly complex in recent years, modern ML frameworks often need to address multiple potentially conflicting objectives with coupled decision variables across different layers. This creates a compelling need for multi-objective bilevel learning (MOBL). So far, however, the field of MOBL remains in its infancy and many important problems remain under-explored. This motivates us to fill this gap and systematically investigate the theoretical and algorithmic foundation of MOBL. Specifically, we consider MOBL problems with multiple conflicting objectives guided by preferences at the upper-level subproblem, where part of the inputs depend on the optimal solution of the lower-level subproblem. Our goal is to develop efficient MOBL optimization algorithms to (1) identify a preference-guided Pareto-stationary solution with low oracle complexity; and (2) enable systematic Pareto front exploration. To this end, we propose a unifying algorithmic framework called weighted-Chebyshev multi-hyper-gradient-descent (WC-MHGD) for both deterministic and stochastic settings with finite-time Pareto-stationarity convergence rate guarantees, which not only implies low oracle complexity but also induces systematic Pareto front exploration. We further conduct extensive experiments to confirm our theoretical results.
Abstract:Linguistic Landscape (LL) research traditionally relies on manual photography and annotation of public signages to examine distribution of languages in urban space. While such methods yield valuable findings, the process is time-consuming and difficult for large study areas. This study explores the use of AI powered language detection method to automate LL analysis. Using Honolulu Chinatown as a case study, we constructed a georeferenced photo dataset of 1,449 images collected by researchers and applied AI for optical character recognition (OCR) and language classification. We also conducted manual validations for accuracy checking. This model achieved an overall accuracy of 79%. Five recurring types of mislabeling were identified, including distortion, reflection, degraded surface, graffiti, and hallucination. The analysis also reveals that the AI model treats all regions of an image equally, detecting peripheral or background texts that human interpreters typically ignore. Despite these limitations, the results demonstrate the potential of integrating AI-assisted workflows into LL research to reduce such time-consuming processes. However, due to all the limitations and mis-labels, we recognize that AI cannot be fully trusted during this process. This paper encourages a hybrid approach combining AI automation with human validation for a more reliable and efficient workflow.
Abstract:Machine anomalous sound detection (ASD) is a valuable technique across various applications. However, its generalization performance is often limited due to challenges in data collection and the complexity of acoustic environments. Inspired by the success of large pre-trained models in numerous fields, this paper introduces a robust ASD model that leverages self-supervised pre-trained models trained on large-scale speech and audio datasets. Although there are inconsistencies between the pre-training datasets and the ASD task, our findings indicate that pre-training still provides substantial benefits for ASD. To mitigate overfitting and retain learned knowledge when fine-tuning with limited data, we explore Fully-Connected Low-Rank Adaptation (LoRA) as an alternative to full fine-tuning. Additionally, we propose a Machine-aware Group Adapter module, which enables the model to capture differences between various machines within a unified framework, thereby enhancing the generalization performance of ASD systems. To address the challenge of missing attribute labels, we design a novel objective function that dynamically clusters unattributed data using vector quantization and optimizes through a dual-level contrastive learning loss. The proposed methods are evaluated on all benchmark datasets, including the DCASE 2020-2024 five ASD challenges, and the experimental results show significant improvements of our new approach and demonstrate the effectiveness of our proposed strategies.
Abstract:With wireless devices increasingly forming a unified smart network for seamless, user-friendly operations, random access (RA) medium access control (MAC) design is considered a key solution for handling unpredictable data traffic from multiple terminals. However, it remains challenging to design an effective RA-based MAC protocol to minimize collisions and ensure transmission fairness across the devices. While existing multi-agent reinforcement learning (MARL) approaches with centralized training and decentralized execution (CTDE) have been proposed to optimize RA performance, their reliance on centralized training and the significant overhead required for information collection can make real-world applications unrealistic. In this work, we adopt a fully decentralized MARL architecture, where policy learning does not rely on centralized tasks but leverages consensus-based information exchanges across devices. We design our MARL algorithm over an actor-critic (AC) network and propose exchanging only local rewards to minimize communication overhead. Furthermore, we provide a theoretical proof of global convergence for our approach. Numerical experiments show that our proposed MARL algorithm can significantly improve RA network performance compared to other baselines.
Abstract:Mixture-of-Experts (MoE) has become a dominant architecture for scaling Large Language Models (LLMs) efficiently by decoupling total parameters from computational cost. However, this decoupling creates a critical challenge: predicting the model capacity of a given MoE configurations (e.g., expert activation ratio and granularity) remains an unresolved problem. To address this gap, we introduce Efficiency Leverage (EL), a metric quantifying the computational advantage of an MoE model over a dense equivalent. We conduct a large-scale empirical study, training over 300 models up to 28B parameters, to systematically investigate the relationship between MoE architectural configurations and EL. Our findings reveal that EL is primarily driven by the expert activation ratio and the total compute budget, both following predictable power laws, while expert granularity acts as a non-linear modulator with a clear optimal range. We integrate these discoveries into a unified scaling law that accurately predicts the EL of an MoE architecture based on its configuration. To validate our derived scaling laws, we designed and trained Ling-mini-beta, a pilot model for Ling-2.0 series with only 0.85B active parameters, alongside a 6.1B dense model for comparison. When trained on an identical 1T high-quality token dataset, Ling-mini-beta matched the performance of the 6.1B dense model while consuming over 7x fewer computational resources, thereby confirming the accuracy of our scaling laws. This work provides a principled and empirically-grounded foundation for the scaling of efficient MoE models.
Abstract:Recent advances in learning rate (LR) scheduling have demonstrated the effectiveness of decay-free approaches that eliminate the traditional decay phase while maintaining competitive performance. Model merging techniques have emerged as particularly promising solutions in this domain. We present Warmup-Stable and Merge (WSM), a general framework that establishes a formal connection between learning rate decay and model merging. WSM provides a unified theoretical foundation for emulating various decay strategies-including cosine decay, linear decay and inverse square root decay-as principled model averaging schemes, while remaining fully compatible with diverse optimization methods. Through extensive experiments, we identify merge duration-the training window for checkpoint aggregation-as the most critical factor influencing model performance, surpassing the importance of both checkpoint interval and merge quantity. Our framework consistently outperforms the widely-adopted Warmup-Stable-Decay (WSD) approach across multiple benchmarks, achieving significant improvements of +3.5% on MATH, +2.9% on HumanEval, and +5.5% on MMLU-Pro. The performance advantages extend to supervised fine-tuning scenarios, highlighting WSM's potential for long-term model refinement.
Abstract:With the rapid deployment of SCADA systems, how to effectively analyze industrial signals and detect abnormal states is an urgent need for the industry. Due to the significant heterogeneity of these signals, which we summarize as the M5 problem, previous works only focus on small sub-problems and employ specialized models, failing to utilize the synergies between modalities and the powerful scaling law. However, we argue that the M5 signals can be modeled in a unified manner due to the intrinsic similarity. As a result, we propose FISHER, a Foundation model for multi-modal Industrial Signal compreHEnsive Representation. To support arbitrary sampling rates, FISHER considers the increment of sampling rate as the concatenation of sub-band information. Specifically, FISHER takes the STFT sub-band as the modeling unit and adopts a teacher student SSL framework for pre-training. We also develop the RMIS benchmark, which evaluates the representations of M5 industrial signals on multiple health management tasks. Compared with top SSL models, FISHER showcases versatile and outstanding capabilities with a general performance gain up to 5.03%, along with much more efficient scaling curves. We also investigate the scaling law on downstream tasks and derive potential avenues for future works. FISHER is now open-sourced on https://github.com/jianganbai/FISHER




Abstract:Vision-language models demand watermarking solutions that protect intellectual property without compromising multimodal coherence. Existing text watermarking methods disrupt visual-textual alignment through biased token selection and static strategies, leaving semantic-critical concepts vulnerable. We propose VLA-Mark, a vision-aligned framework that embeds detectable watermarks while preserving semantic fidelity through cross-modal coordination. Our approach integrates multiscale visual-textual alignment metrics, combining localized patch affinity, global semantic coherence, and contextual attention patterns, to guide watermark injection without model retraining. An entropy-sensitive mechanism dynamically balances watermark strength and semantic preservation, prioritizing visual grounding during low-uncertainty generation phases. Experiments show 7.4% lower PPL and 26.6% higher BLEU than conventional methods, with near-perfect detection (98.8% AUC). The framework demonstrates 96.1\% attack resilience against attacks such as paraphrasing and synonym substitution, while maintaining text-visual consistency, establishing new standards for quality-preserving multimodal watermarking
Abstract:As a foundational technology for intelligent human-computer interaction, voice conversion (VC) seeks to transform speech from any source timbre into any target timbre. Traditional voice conversion methods based on Generative Adversarial Networks (GANs) encounter significant challenges in precisely encoding diverse speech elements and effectively synthesising these elements into natural-sounding converted speech. To overcome these limitations, we introduce Pureformer-VC, an encoder-decoder framework that utilizes Conformer blocks to build a disentangled encoder and employs Zipformer blocks to create a style transfer decoder. We adopt a variational decoupled training approach to isolate speech components using a Variational Autoencoder (VAE), complemented by triplet discriminative training to enhance the speaker's discriminative capabilities. Furthermore, we incorporate the Attention Style Transfer Mechanism (ASTM) with Zipformer's shared weights to improve the style transfer performance in the decoder. We conducted experiments on two multi-speaker datasets. The experimental results demonstrate that the proposed model achieves comparable subjective evaluation scores while significantly enhancing objective metrics compared to existing approaches in many-to-many and many-to-one VC scenarios.