Abstract:With wireless devices increasingly forming a unified smart network for seamless, user-friendly operations, random access (RA) medium access control (MAC) design is considered a key solution for handling unpredictable data traffic from multiple terminals. However, it remains challenging to design an effective RA-based MAC protocol to minimize collisions and ensure transmission fairness across the devices. While existing multi-agent reinforcement learning (MARL) approaches with centralized training and decentralized execution (CTDE) have been proposed to optimize RA performance, their reliance on centralized training and the significant overhead required for information collection can make real-world applications unrealistic. In this work, we adopt a fully decentralized MARL architecture, where policy learning does not rely on centralized tasks but leverages consensus-based information exchanges across devices. We design our MARL algorithm over an actor-critic (AC) network and propose exchanging only local rewards to minimize communication overhead. Furthermore, we provide a theoretical proof of global convergence for our approach. Numerical experiments show that our proposed MARL algorithm can significantly improve RA network performance compared to other baselines.
Abstract:Mixture-of-Experts (MoE) has become a dominant architecture for scaling Large Language Models (LLMs) efficiently by decoupling total parameters from computational cost. However, this decoupling creates a critical challenge: predicting the model capacity of a given MoE configurations (e.g., expert activation ratio and granularity) remains an unresolved problem. To address this gap, we introduce Efficiency Leverage (EL), a metric quantifying the computational advantage of an MoE model over a dense equivalent. We conduct a large-scale empirical study, training over 300 models up to 28B parameters, to systematically investigate the relationship between MoE architectural configurations and EL. Our findings reveal that EL is primarily driven by the expert activation ratio and the total compute budget, both following predictable power laws, while expert granularity acts as a non-linear modulator with a clear optimal range. We integrate these discoveries into a unified scaling law that accurately predicts the EL of an MoE architecture based on its configuration. To validate our derived scaling laws, we designed and trained Ling-mini-beta, a pilot model for Ling-2.0 series with only 0.85B active parameters, alongside a 6.1B dense model for comparison. When trained on an identical 1T high-quality token dataset, Ling-mini-beta matched the performance of the 6.1B dense model while consuming over 7x fewer computational resources, thereby confirming the accuracy of our scaling laws. This work provides a principled and empirically-grounded foundation for the scaling of efficient MoE models.
Abstract:Recent advances in learning rate (LR) scheduling have demonstrated the effectiveness of decay-free approaches that eliminate the traditional decay phase while maintaining competitive performance. Model merging techniques have emerged as particularly promising solutions in this domain. We present Warmup-Stable and Merge (WSM), a general framework that establishes a formal connection between learning rate decay and model merging. WSM provides a unified theoretical foundation for emulating various decay strategies-including cosine decay, linear decay and inverse square root decay-as principled model averaging schemes, while remaining fully compatible with diverse optimization methods. Through extensive experiments, we identify merge duration-the training window for checkpoint aggregation-as the most critical factor influencing model performance, surpassing the importance of both checkpoint interval and merge quantity. Our framework consistently outperforms the widely-adopted Warmup-Stable-Decay (WSD) approach across multiple benchmarks, achieving significant improvements of +3.5% on MATH, +2.9% on HumanEval, and +5.5% on MMLU-Pro. The performance advantages extend to supervised fine-tuning scenarios, highlighting WSM's potential for long-term model refinement.
Abstract:With the rapid deployment of SCADA systems, how to effectively analyze industrial signals and detect abnormal states is an urgent need for the industry. Due to the significant heterogeneity of these signals, which we summarize as the M5 problem, previous works only focus on small sub-problems and employ specialized models, failing to utilize the synergies between modalities and the powerful scaling law. However, we argue that the M5 signals can be modeled in a unified manner due to the intrinsic similarity. As a result, we propose FISHER, a Foundation model for multi-modal Industrial Signal compreHEnsive Representation. To support arbitrary sampling rates, FISHER considers the increment of sampling rate as the concatenation of sub-band information. Specifically, FISHER takes the STFT sub-band as the modeling unit and adopts a teacher student SSL framework for pre-training. We also develop the RMIS benchmark, which evaluates the representations of M5 industrial signals on multiple health management tasks. Compared with top SSL models, FISHER showcases versatile and outstanding capabilities with a general performance gain up to 5.03%, along with much more efficient scaling curves. We also investigate the scaling law on downstream tasks and derive potential avenues for future works. FISHER is now open-sourced on https://github.com/jianganbai/FISHER
Abstract:Vision-language models demand watermarking solutions that protect intellectual property without compromising multimodal coherence. Existing text watermarking methods disrupt visual-textual alignment through biased token selection and static strategies, leaving semantic-critical concepts vulnerable. We propose VLA-Mark, a vision-aligned framework that embeds detectable watermarks while preserving semantic fidelity through cross-modal coordination. Our approach integrates multiscale visual-textual alignment metrics, combining localized patch affinity, global semantic coherence, and contextual attention patterns, to guide watermark injection without model retraining. An entropy-sensitive mechanism dynamically balances watermark strength and semantic preservation, prioritizing visual grounding during low-uncertainty generation phases. Experiments show 7.4% lower PPL and 26.6% higher BLEU than conventional methods, with near-perfect detection (98.8% AUC). The framework demonstrates 96.1\% attack resilience against attacks such as paraphrasing and synonym substitution, while maintaining text-visual consistency, establishing new standards for quality-preserving multimodal watermarking
Abstract:Deep speech classification tasks, including keyword spotting and speaker verification, are vital in speech-based human-computer interaction. Recently, the security of these technologies has been revealed to be susceptible to backdoor attacks. Specifically, attackers use noisy disruption triggers and speech element triggers to produce poisoned speech samples that train models to become vulnerable. However, these methods typically create only a limited number of backdoors due to the inherent constraints of the trigger function. In this paper, we propose that speech backdoor attacks can strategically focus on speech elements such as timbre and emotion, leveraging the Speech Large Language Model (SLLM) to generate diverse triggers. Increasing the number of triggers may disproportionately elevate the poisoning rate, resulting in higher attack costs and a lower success rate per trigger. We introduce the Multiple Gradient Descent Algorithm (MGDA) as a mitigation strategy to address this challenge. The proposed attack is called the Speech Prompt Backdoor Attack (SPBA). Building on this foundation, we conducted attack experiments on two speech classification tasks, demonstrating that SPBA shows significant trigger effectiveness and achieves exceptional performance in attack metrics.
Abstract:As a foundational technology for intelligent human-computer interaction, voice conversion (VC) seeks to transform speech from any source timbre into any target timbre. Traditional voice conversion methods based on Generative Adversarial Networks (GANs) encounter significant challenges in precisely encoding diverse speech elements and effectively synthesising these elements into natural-sounding converted speech. To overcome these limitations, we introduce Pureformer-VC, an encoder-decoder framework that utilizes Conformer blocks to build a disentangled encoder and employs Zipformer blocks to create a style transfer decoder. We adopt a variational decoupled training approach to isolate speech components using a Variational Autoencoder (VAE), complemented by triplet discriminative training to enhance the speaker's discriminative capabilities. Furthermore, we incorporate the Attention Style Transfer Mechanism (ASTM) with Zipformer's shared weights to improve the style transfer performance in the decoder. We conducted experiments on two multi-speaker datasets. The experimental results demonstrate that the proposed model achieves comparable subjective evaluation scores while significantly enhancing objective metrics compared to existing approaches in many-to-many and many-to-one VC scenarios.
Abstract:The interpretability of Mixture-of-Experts (MoE) models, especially those with heterogeneous designs, remains underexplored. Existing attribution methods for dense models fail to capture dynamic routing-expert interactions in sparse MoE architectures. To address this issue, we propose a cross-level attribution algorithm to analyze sparse MoE architectures (Qwen 1.5-MoE, OLMoE, Mixtral-8x7B) against dense models (Qwen 1.5-7B, Llama-7B, Mixtral-7B). Results show MoE models achieve 37% higher per-layer efficiency via a "mid-activation, late-amplification" pattern: early layers screen experts, while late layers refine knowledge collaboratively. Ablation studies reveal a "basic-refinement" framework--shared experts handle general tasks (entity recognition), while routed experts specialize in domain-specific processing (geographic attributes). Semantic-driven routing is evidenced by strong correlations between attention heads and experts (r=0.68), enabling task-aware coordination. Notably, architectural depth dictates robustness: deep Qwen 1.5-MoE mitigates expert failures (e.g., 43% MRR drop in geographic tasks when blocking top-10 experts) through shared expert redundancy, whereas shallow OLMoE suffers severe degradation (76% drop). Task sensitivity further guides design: core-sensitive tasks (geography) require concentrated expertise, while distributed-tolerant tasks (object attributes) leverage broader participation. These insights advance MoE interpretability, offering principles to balance efficiency, specialization, and robustness.
Abstract:Collaborative training methods like Federated Learning (FL) and Split Learning (SL) enable distributed machine learning without sharing raw data. However, FL assumes clients can train entire models, which is infeasible for large-scale models. In contrast, while SL alleviates the client memory constraint in FL by offloading most training to the server, it increases network latency due to its sequential nature. Other methods address the conundrum by using local loss functions for parallel client-side training to improve efficiency, but they lack server feedback and potentially suffer poor accuracy. We propose FSL-SAGE (Federated Split Learning via Smashed Activation Gradient Estimation), a new federated split learning algorithm that estimates server-side gradient feedback via auxiliary models. These auxiliary models periodically adapt to emulate server behavior on local datasets. We show that FSL-SAGE achieves a convergence rate of $\mathcal{O}(1/\sqrt{T})$, where $T$ is the number of communication rounds. This result matches FedAvg, while significantly reducing communication costs and client memory requirements. Our empirical results also verify that it outperforms existing state-of-the-art FSL methods, offering both communication efficiency and accuracy.
Abstract:Actor-critic methods for decentralized multi-agent reinforcement learning (MARL) facilitate collaborative optimal decision making without centralized coordination, thus enabling a wide range of applications in practice. To date, however, most theoretical convergence studies for existing actor-critic decentralized MARL methods are limited to the guarantee of a stationary solution under the linear function approximation. This leaves a significant gap between the highly successful use of deep neural actor-critic for decentralized MARL in practice and the current theoretical understanding. To bridge this gap, in this paper, we make the first attempt to develop a deep neural actor-critic method for decentralized MARL, where both the actor and critic components are inherently non-linear. We show that our proposed method enjoys a global optimality guarantee with a finite-time convergence rate of O(1/T), where T is the total iteration times. This marks the first global convergence result for deep neural actor-critic methods in the MARL literature. We also conduct extensive numerical experiments, which verify our theoretical results.