Abstract:Test-time scaling for code generation commonly relies on Best-of-N selection, in which multiple candidate solutions are sampled from a base model, and the best one is selected by an LLM judge. However, training reliable LLM judges is challenging due to severe distribution shifts, including imbalances between easy and hard problems, mismatches between training tasks and evaluation benchmarks, and trajectory mismatch arising from training data generated by cheaper models whose behavior differs from that of inference-time models. We propose DAJ, a reasoning-based LLM judge trained with verifiable rewards under a bi-level data-reweighted learning framework. The proposed framework learns data-importance weights (either domain-level or instance-level) to optimize generalization performance on a held-out meta set aligned with target benchmarks. To the best of our knowledge, this is the first application of data reweighting to LLM-as-a-Judge training for test-time scaling. Our approach automatically emphasizes hard problems, in-distribution samples, and trajectory-aligned data, without relying on hand-crafted heuristics. Empirically, DAJ achieves state-of-the-art performance on LiveCodeBench and BigCodeBench, outperforming strong test-time scaling baselines as well as leading proprietary models.
Abstract:Model routing chooses which language model to use for each query. By sending easy queries to cheaper models and hard queries to stronger ones, it can significantly reduce inference cost while maintaining high accuracy. However, most existing routers treat this as a fixed choice among a small set of models, which makes them hard to adapt to new models or changing budget constraints. In this paper, we propose SCOPE (Scalable and Controllable Outcome Performance Estimator), a routing framework that goes beyond model selection by predicting their cost and performance. Trained with reinforcement learning, SCOPE makes reasoning-based predictions by retrieving how models behave on similar problems, rather than relying on fixed model names, enabling it to work with new, unseen models. Moreover, by explicitly predicting how accurate and how expensive a model will be, it turns routing into a dynamic decision problem, allowing users to easily control the trade-off between accuracy and cost. Experiments show that SCOPE is more than just a cost-saving tool. It flexibly adapts to user needs: it can boost accuracy by up to 25.7% when performance is the priority, or cut costs by up to 95.1% when efficiency matters most.
Abstract:Code generation is a core application of large language models (LLMs), yet LLMs still frequently fail on complex programming tasks. Given its success in mathematical reasoning, test-time scaling approaches such as Process Reward Model (PRM)-based Best-of-N selection offer a promising way to improve performance. However, existing PRMs remain ineffective for code generation due to the lack of meaningful step decomposition in code and the noise of Monte Carlo-estimated partial-solution correctness scores (rewards). To address these challenges, we propose FunPRM. FunPRM prompts LLMs to encourage modular code generation organized into functions, with functions treated as PRM reasoning steps. Furthermore, FunPRM introduces a novel meta-learning-based reward correction mechanism that leverages clean final-solution rewards obtained via a unit-test-based evaluation system to purify noisy partial-solution rewards. Experiments on LiveCodeBench and BigCodeBench demonstrate that FunPRM consistently outperforms existing test-time scaling methods across five base LLMs, notably achieving state-of-the-art performance on LiveCodeBench when combined with O4-mini. Furthermore, FunPRM produces code that is more readable and reusable for developers.
Abstract:Real-world design documents (e.g., posters) are inherently multi-layered, combining decoration, text, and images. Editing them from natural-language instructions requires fine-grained, layer-aware reasoning to identify relevant layers and coordinate modifications. Prior work largely overlooks multi-layer design document editing, focusing instead on single-layer image editing or multi-layer generation, which assume a flat canvas and lack the reasoning needed to determine what and where to modify. To address this gap, we introduce the Multi-Layer Document Editing Agent (MiLDEAgent), a reasoning-based framework that combines an RL-trained multimodal reasoner for layer-wise understanding with an image editor for targeted modifications. To systematically benchmark this setting, we introduce the MiLDEBench, a human-in-the-loop corpus of over 20K design documents paired with diverse editing instructions. The benchmark is complemented by a task-specific evaluation protocol, MiLDEEval, which spans four dimensions including instruction following, layout consistency, aesthetics, and text rendering. Extensive experiments on 14 open-source and 2 closed-source models reveal that existing approaches fail to generalize: open-source models often cannot complete multi-layer document editing tasks, while closed-source models suffer from format violations. In contrast, MiLDEAgent achieves strong layer-aware reasoning and precise editing, significantly outperforming all open-source baselines and attaining performance comparable to closed-source models, thereby establishing the first strong baseline for multi-layer document editing.



Abstract:Process Reward Models (PRMs) have become essential for improving Large Language Models (LLMs) via test-time scaling, yet their effectiveness in coding remains limited due to the lack of meaningful step decompositions in code and the noise of Monte-Carlo-generated partial labels. We propose DreamPRM-Code, a coding-focused PRM that treats functions as reasoning steps using a Chain-of-Function prompting strategy to induce modular code generation, enabling PRM training and application analogous to mathematical reasoning tasks. To address label noise, DreamPRM-Code introduces a meta-learning-based correction mechanism that leverages clean final-solution unit-test labels and performs bi-level optimization to refine intermediate labels. Applying on test-time scaling, DreamPRM-Code achieved state-of-the-art performance on LiveCodeBench with 80.9 pass@1 rate, surpassing OpenAI o4-mini.
Abstract:Reinforcement learning from verifiable rewards (RLVR) has recently been extended from text-only LLMs to vision-language models (VLMs) to elicit long-chain multimodal reasoning. However, RLVR-trained VLMs still exhibit two persistent failure modes: inaccurate visual extraction (missing or hallucinating details) and logically inconsistent chains-of-thought, largely because verifiable signals supervise only the final answer. We propose PeRL-VL (Perception and Reasoning Learning for Vision-Language Models), a decoupled framework that separately improves visual perception and textual reasoning on top of RLVR. For perception, PeRL-VL introduces a VLM-based description reward that scores the model's self-generated image descriptions for faithfulness and sufficiency. For reasoning, PeRL-VL adds a text-only Reasoning SFT stage on logic-rich chain-of-thought data, enhancing coherence and logical consistency independently of vision. Across diverse multimodal benchmarks, PeRL-VL improves average Pass@1 accuracy from 63.3% (base Qwen2.5-VL-7B) to 68.8%, outperforming standard RLVR, text-only reasoning SFT, and naive multimodal distillation from GPT-4o.
Abstract:Transformer models are foundational to natural language processing (NLP) applications, yet remain vulnerable to backdoor attacks introduced through poisoned data, which implant hidden behaviors during training. To strengthen the ability to prevent such compromises, recent research has focused on designing increasingly stealthy attacks to stress-test existing defenses, pairing backdoor behaviors with stylized artifact or token-level perturbation triggers. However, this trend diverts attention from the harder and more realistic case: making the model respond to semantic triggers such as specific names or entities, where a successful backdoor could manipulate outputs tied to real people or events in deployed systems. Motivated by this growing disconnect, we introduce SteganoBackdoor, bringing stealth techniques back into line with practical threat models. Leveraging innocuous properties from natural-language steganography, SteganoBackdoor applies a gradient-guided data optimization process to transform semantic trigger seeds into steganographic carriers that embed a high backdoor payload, remain fluent, and exhibit no representational resemblance to the trigger. Across diverse experimental settings, SteganoBackdoor achieves over 99% attack success at an order-of-magnitude lower data-poisoning rate than prior approaches while maintaining unparalleled evasion against a comprehensive suite of data-level defenses. By revealing this practical and covert attack, SteganoBackdoor highlights an urgent blind spot in current defenses and demands immediate attention to adversarial data defenses and real-world threat modeling.
Abstract:The opioid crisis represents a significant moment in public health that reveals systemic shortcomings across regulatory systems, healthcare practices, corporate governance, and public policy. Analyzing how these interconnected systems simultaneously failed to protect public health requires innovative analytic approaches for exploring the vast amounts of data and documents disclosed in the UCSF-JHU Opioid Industry Documents Archive (OIDA). The complexity, multimodal nature, and specialized characteristics of these healthcare-related legal and corporate documents necessitate more advanced methods and models tailored to specific data types and detailed annotations, ensuring the precision and professionalism in the analysis. In this paper, we tackle this challenge by organizing the original dataset according to document attributes and constructing a benchmark with 400k training documents and 10k for testing. From each document, we extract rich multimodal information-including textual content, visual elements, and layout structures-to capture a comprehensive range of features. Using multiple AI models, we then generate a large-scale dataset comprising 360k training QA pairs and 10k testing QA pairs. Building on this foundation, we develop domain-specific multimodal Large Language Models (LLMs) and explore the impact of multimodal inputs on task performance. To further enhance response accuracy, we incorporate historical QA pairs as contextual grounding for answering current queries. Additionally, we incorporate page references within the answers and introduce an importance-based page classifier, further improving the precision and relevance of the information provided. Preliminary results indicate the improvements with our AI assistant in document information extraction and question-answering tasks. The dataset is available at: https://huggingface.co/datasets/opioidarchive/oida-qa
Abstract:Large language models (LLMs) are increasingly used for long-document question answering, where reliable attribution to sources is critical for trust. Existing post-hoc attribution methods work well for extractive QA but struggle in multi-hop, abstractive, and semi-extractive settings, where answers synthesize information across passages. To address these challenges, we argue that post-hoc attribution can be reframed as a reasoning problem, where answers are decomposed into constituent units, each tied to specific context. We first show that prompting models to generate such decompositions alongside attributions improves performance. Building on this, we introduce DecompTune, a post-training method that teaches models to produce answer decompositions as intermediate reasoning steps. We curate a diverse dataset of complex QA tasks, annotated with decompositions by a strong LLM, and post-train Qwen-2.5 (7B and 14B) using a two-stage SFT + GRPO pipeline with task-specific curated rewards. Across extensive experiments and ablations, DecompTune substantially improves attribution quality, outperforming prior methods and matching or exceeding state-of-the-art frontier models.
Abstract:Most organizational data in this world are stored as documents, and visual retrieval plays a crucial role in unlocking the collective intelligence from all these documents. However, existing benchmarks focus on English-only document retrieval or only consider multilingual question-answering on a single-page image. To bridge this gap, we introduce VisR-Bench, a multilingual benchmark designed for question-driven multimodal retrieval in long documents. Our benchmark comprises over 35K high-quality QA pairs across 1.2K documents, enabling fine-grained evaluation of multimodal retrieval. VisR-Bench spans sixteen languages with three question types (figures, text, and tables), offering diverse linguistic and question coverage. Unlike prior datasets, we include queries without explicit answers, preventing models from relying on superficial keyword matching. We evaluate various retrieval models, including text-based methods, multimodal encoders, and MLLMs, providing insights into their strengths and limitations. Our results show that while MLLMs significantly outperform text-based and multimodal encoder models, they still struggle with structured tables and low-resource languages, highlighting key challenges in multilingual visual retrieval.