School of Integrated Circuits, Peking University
Abstract:The rapid advancement of large language models (LLMs) demands increasingly reliable evaluation, yet current centralized evaluation suffers from opacity, overfitting, and hardware-induced variance. Our empirical analysis reveals an alarming inconsistency in existing evaluations: the standard deviation across ten repeated runs of a single model on HumanEval (1.67) actually exceeds the performance gap among the top-10 models on the official leaderboard (0.91), rendering current rankings statistically precarious. To mitigate these instabilities, we propose a decentralized evaluation framework that enables hardware and parameter diversity through large-scale benchmarking across heterogeneous compute nodes. By leveraging the blockchain-based protocol, the framework incentivizes global contributors to act as independent validators, using a robust reward system to ensure evaluation integrity and discourage dishonest participation. This collective verification transforms evaluation from a "centralized black box" into a "decentralized endorsement" where multi-party consensus and diverse inference environments yield a more stable, representative metric. Experimental results demonstrate that the decentralized evaluation framework reduces the standard deviation across ten runs on the same model to 0.28. This significant improvement over conventional frameworks ensures higher statistical confidence in model rankings. We have completely implemented this platform and will soon release it to the community.
Abstract:Weight-only post-training quantization (PTQ) is crucial for efficient Large Language Model (LLM) deployment but suffers from accuracy degradation caused by weight and activation outliers. Existing mitigation strategies often face critical limitations: they either yield insufficient outlier suppression or incur significant deployment inefficiencies, such as inference latency, heavy preprocessing, or reliance on complex operator fusion. To resolve these limitations, we leverage a key insight: over-parameterized LLMs often converge to Flat Minima, implying a vast equivalent solution space where weights can be adjusted without compromising accuracy. Building on this, we propose Astro, an Activation-guided Structured Regularization framework designed to suppress the negative effects of outliers in a hardware-friendly and efficient manner. Leveraging the activation-guided regularization objective, Astro actively reconstructs intrinsically robust weights, aggressively suppressing weight outliers corresponding to high-magnitude activations without sacrificing model accuracy. Crucially, Astro introduces zero inference latency and is orthogonal to mainstream quantization methods like GPTQ. Extensive experiments show that Astro achieves highly competitive performance; notably, on LLaMA-2-7B, it achieves better performance than complex learning-based rotation methods with almost 1/3 of the quantization time.
Abstract:In integrated sensing and communication (ISAC) networks, multiple base stations (BSs) collaboratively sense a common target, leveraging diversity from multiple observation perspectives and joint signal processing to enhance sensing performance. This paper introduces a novel message-passing (MP)-based parameter estimation framework for collaborative MIMO-OFDM ISAC systems, which jointly estimates the target's position and velocity. First, a signal propagation model is established based on geometric relationships, and a factor graph is constructed to represent the unknown parameters. The sum-product algorithm (SPA) is then applied to this factor graph to jointly estimate the multi-dimensional parameter vector. To reduce communication overhead and computational complexity, we employ a hierarchical message-passing scheme with Gaussian approximation. By adopting parameterized message distributions and layered processing, the proposed method significantly reduces both computational complexity and inter-BS communication overhead. Simulation results demonstrate the effectiveness of the proposed MP-based parameter estimation algorithm and highlight the benefits of multi-perspective observations and joint signal processing for cooperative sensing in MIMO-OFDM ISAC systems.
Abstract:Decoding visual representations from brain signals has attracted significant attention in both neuroscience and artificial intelligence. However, the degree to which brain signals truly encode visual information remains unclear. Current visual decoding approaches explore various brain-image alignment strategies, yet most emphasize high-level semantic features while neglecting pixel-level details, thereby limiting our understanding of the human visual system. In this paper, we propose a brain-image alignment strategy that leverages multiple pre-trained visual encoders with distinct inductive biases to capture hierarchical and multi-scale visual representations, while employing a contrastive learning objective to achieve effective alignment between brain signals and visual embeddings. Furthermore, we introduce a Fusion Prior, which learns a stable mapping on large-scale visual data and subsequently matches brain features to this pre-trained prior, thereby enhancing distributional consistency across modalities. Extensive quantitative and qualitative experiments demonstrate that our method achieves a favorable balance between retrieval accuracy and reconstruction fidelity.
Abstract:Large language models rely on kv-caches to avoid redundant computation during autoregressive decoding, but as context length grows, reading and writing the cache can quickly saturate GPU memory bandwidth. Recent work has explored KV-cache compression, yet most approaches neglect the data-dependent nature of kv-caches and their variation across layers. We introduce KV-CoRE KV-cache Compressibility by Rank Evaluation), an SVD-based method for quantifying the data-dependent low-rank compressibility of kv-caches. KV-CoRE computes the optimal low-rank approximation under the Frobenius norm and, being gradient-free and incremental, enables efficient dataset-level, layer-wise evaluation. Using this method, we analyze multiple models and datasets spanning five English domains and sixteen languages, uncovering systematic patterns that link compressibility to model architecture, training data, and language coverage. As part of this analysis, we employ the Normalized Effective Rank as a metric of compressibility and show that it correlates strongly with performance degradation under compression. Our study establishes a principled evaluation framework and the first large-scale benchmark of kv-cache compressibility in LLMs, offering insights for dynamic, data-aware compression and data-centric model development.
Abstract:Event-based multimodal large language models (MLLMs) enable robust perception in high-speed and low-light scenarios, addressing key limitations of frame-based MLLMs. However, current event-based MLLMs often rely on dense image-like processing paradigms, overlooking the spatiotemporal sparsity of event streams and resulting in high computational cost. In this paper, we propose EventFlash, a novel and efficient MLLM to explore spatiotemporal token sparsification for reducing data redundancy and accelerating inference. Technically, we build EventMind, a large-scale and scene-diverse dataset with over 500k instruction sets, providing both short and long event stream sequences to support our curriculum training strategy. We then present an adaptive temporal window aggregation module for efficient temporal sampling, which adaptively compresses temporal tokens while retaining key temporal cues. Finally, a sparse density-guided attention module is designed to improve spatial token efficiency by selecting informative regions and suppressing empty or sparse areas. Experimental results show that EventFlash achieves a $12.4\times$ throughput improvement over the baseline (EventFlash-Zero) while maintaining comparable performance. It supports long-range event stream processing with up to 1,000 bins, significantly outperforming the 5-bin limit of EventGPT. We believe EventFlash serves as an efficient foundation model for event-based vision.
Abstract:Clothing recommendation extends beyond merely generating personalized outfits; it serves as a crucial medium for aesthetic guidance. However, existing methods predominantly rely on user-item-outfit interaction behaviors while overlooking explicit representations of clothing aesthetics. To bridge this gap, we present the AesRec benchmark dataset featuring systematic quantitative aesthetic annotations, thereby enabling the development of aesthetics-aligned recommendation systems. Grounded in professional apparel quality standards and fashion aesthetic principles, we define a multidimensional set of indicators. At the item level, six dimensions are independently assessed: silhouette, chromaticity, materiality, craftsmanship, wearability, and item-level impression. Transitioning to the outfit level, the evaluation retains the first five core attributes while introducing stylistic synergy, visual harmony, and outfit-level impression as distinct metrics to capture the collective aesthetic impact. Given the increasing human-like proficiency of Vision-Language Models in multimodal understanding and interaction, we leverage them for large-scale aesthetic scoring. We conduct rigorous human-machine consistency validation on a fashion dataset, confirming the reliability of the generated ratings. Experimental results based on AesRec further demonstrate that integrating quantified aesthetic information into clothing recommendation models can provide aesthetic guidance for users while fulfilling their personalized requirements.
Abstract:Vision language models (VLMs) extend the reasoning capabilities of large language models (LLMs) to cross-modal settings, yet remain highly vulnerable to multimodal jailbreak attacks. Existing defenses predominantly rely on safety fine-tuning or aggressive token manipulations, incurring substantial training costs or significantly degrading utility. Recent research shows that LLMs inherently recognize unsafe content in text, and the incorporation of visual inputs in VLMs frequently dilutes risk-related signals. Motivated by this, we propose Risk Awareness Injection (RAI), a lightweight and training-free framework for safety calibration that restores LLM-like risk recognition by amplifying unsafe signals in VLMs. Specifically, RAI constructs an Unsafe Prototype Subspace from language embeddings and performs targeted modulation on selected high-risk visual tokens, explicitly activating safety-critical signals within the cross-modal feature space. This modulation restores the model's LLM-like ability to detect unsafe content from visual inputs, while preserving the semantic integrity of original tokens for cross-modal reasoning. Extensive experiments across multiple jailbreak and utility benchmarks demonstrate that RAI substantially reduces attack success rate without compromising task performance.
Abstract:Point clouds provide a compact and expressive representation of 3D objects, and have recently been integrated into multimodal large language models (MLLMs). However, existing methods primarily focus on static objects, while understanding dynamic point cloud sequences remains largely unexplored. This limitation is mainly caused by the lack of large-scale cross-modal datasets and the difficulty of modeling motions in spatio-temporal contexts. To bridge this gap, we present 4DPC$^2$hat, the first MLLM tailored for dynamic point cloud understanding. To this end, we construct a large-scale cross-modal dataset 4DPC$^2$hat-200K via a meticulous two-stage pipeline consisting of topology-consistent 4D point construction and two-level captioning. The dataset contains over 44K dynamic object sequences, 700K point cloud frames, and 200K curated question-answer (QA) pairs, supporting inquiries about counting, temporal relationship, action, spatial relationship, and appearance. At the core of the framework, we introduce a Mamba-enhanced temporal reasoning MLLM to capture long-range dependencies and dynamic patterns among a point cloud sequence. Furthermore, we propose a failure-aware bootstrapping learning strategy that iteratively identifies model deficiencies and generates targeted QA supervision to continuously strengthen corresponding reasoning capabilities. Extensive experiments demonstrate that our 4DPC$^2$hat significantly improves action understanding and temporal reasoning compared with existing models, establishing a strong foundation for 4D dynamic point cloud understanding.
Abstract:Large Language Models (LLMs), constrained by their auto-regressive nature, suffer from slow decoding. Speculative decoding methods have emerged as a promising solution to accelerate LLM decoding, attracting attention from both systems and AI research communities. Recently, the pursuit of better draft quality has driven a trend toward parametrically larger draft models, which inevitably introduces substantial computational overhead. While existing work attempts to balance the trade-off between prediction accuracy and compute latency, we address this fundamental dilemma through architectural innovation. We propose PRISM, which disaggregates the computation of each predictive step across different parameter sets, refactoring the computational pathways of draft models to successfully decouple model capacity from inference cost. Through extensive experiments, we demonstrate that PRISM outperforms all existing draft architectures, achieving exceptional acceptance lengths while maintaining minimal draft latency for superior end-to-end speedup. We also re-examine scaling laws with PRISM, revealing that PRISM scales more effectively with expanding data volumes than other draft architectures. Through rigorous and fair comparison, we show that PRISM boosts the decoding throughput of an already highly optimized inference engine by more than 2.6x.