Univ. Waterloo
Abstract:3D Gaussian Splatting (3DGS) excels in photorealistic scene reconstruction but struggles with stylized scenarios (e.g., cartoons, games) due to fragmented textures, semantic misalignment, and limited adaptability to abstract aesthetics. We propose StyleMe3D, a holistic framework for 3D GS style transfer that integrates multi-modal style conditioning, multi-level semantic alignment, and perceptual quality enhancement. Our key insights include: (1) optimizing only RGB attributes preserves geometric integrity during stylization; (2) disentangling low-, medium-, and high-level semantics is critical for coherent style transfer; (3) scalability across isolated objects and complex scenes is essential for practical deployment. StyleMe3D introduces four novel components: Dynamic Style Score Distillation (DSSD), leveraging Stable Diffusion's latent space for semantic alignment; Contrastive Style Descriptor (CSD) for localized, content-aware texture transfer; Simultaneously Optimized Scale (SOS) to decouple style details and structural coherence; and 3D Gaussian Quality Assessment (3DG-QA), a differentiable aesthetic prior trained on human-rated data to suppress artifacts and enhance visual harmony. Evaluated on NeRF synthetic dataset (objects) and tandt db (scenes) datasets, StyleMe3D outperforms state-of-the-art methods in preserving geometric details (e.g., carvings on sculptures) and ensuring stylistic consistency across scenes (e.g., coherent lighting in landscapes), while maintaining real-time rendering. This work bridges photorealistic 3D GS and artistic stylization, unlocking applications in gaming, virtual worlds, and digital art.
Abstract:Despite the remarkable progress of 3D generation, achieving controllability, i.e., ensuring consistency between generated 3D content and input conditions like edge and depth, remains a significant challenge. Existing methods often struggle to maintain accurate alignment, leading to noticeable discrepancies. To address this issue, we propose \name{}, a new framework that enhances controllable 3D generation by explicitly encouraging cyclic consistency between the second-order 3D content, generated based on extracted signals from the first-order generation, and its original input controls. Specifically, we employ an efficient feed-forward backbone that can generate a 3D object from an input condition and a text prompt. Given an initial viewpoint and a control signal, a novel view is rendered from the generated 3D content, from which the extracted condition is used to regenerate the 3D content. This re-generated output is then rendered back to the initial viewpoint, followed by another round of control signal extraction, forming a cyclic process with two consistency constraints. \emph{View consistency} ensures coherence between the two generated 3D objects, measured by semantic similarity to accommodate generative diversity. \emph{Condition consistency} aligns the final extracted signal with the original input control, preserving structural or geometric details throughout the process. Extensive experiments on popular benchmarks demonstrate that \name{} significantly improves controllability, especially for fine-grained details, outperforming existing methods across various conditions (e.g., +14.17\% PSNR for edge, +6.26\% PSNR for sketch).
Abstract:Large-scale Language Models (LLMs) have revolutionized human-AI interaction and achieved significant success in the generation of novel ideas. However, current assessments of idea generation overlook crucial factors such as knowledge leakage in LLMs, the absence of open-ended benchmarks with grounded truth, and the limited scope of feasibility analysis constrained by prompt design. These limitations hinder the potential of uncovering groundbreaking research ideas. In this paper, we present AI Idea Bench 2025, a framework designed to quantitatively evaluate and compare the ideas generated by LLMs within the domain of AI research from diverse perspectives. The framework comprises a comprehensive dataset of 3,495 AI papers and their associated inspired works, along with a robust evaluation methodology. This evaluation system gauges idea quality in two dimensions: alignment with the ground-truth content of the original papers and judgment based on general reference material. AI Idea Bench 2025's benchmarking system stands to be an invaluable resource for assessing and comparing idea-generation techniques, thereby facilitating the automation of scientific discovery.
Abstract:As the post-training of large language models (LLMs) advances from instruction-following to complex reasoning tasks, understanding how different data affect finetuning dynamics remains largely unexplored. In this paper, we present a spectral analysis of layer-wise gradients induced by low/high-quality instruction and reasoning data for LLM post-training. Our analysis reveals that widely-studied metrics for data evaluation, e.g., IFD, InsTag, Difficulty, and Reward, can be explained and unified by spectral properties computed from gradients' singular value decomposition (SVD). Specifically, higher-quality data are usually associated with lower nuclear norms and higher effective ranks. Notably, effective rank exhibits better robustness and resolution than nuclear norm in capturing subtle quality differences. For example, reasoning data achieves substantially higher effective ranks than instruction data, implying richer gradient structures on more complex tasks. Our experiments also highlight that models within the same family share similar gradient patterns regardless of their sizes, whereas different model families diverge significantly. Providing a unified view on the effects of data quality across instruction and reasoning data, this work illuminates the interplay between data quality and training stability, shedding novel insights into developing better data exploration strategies for post-training.
Abstract:Recent advancements in Generalizable Gaussian Splatting have enabled robust 3D reconstruction from sparse input views by utilizing feed-forward Gaussian Splatting models, achieving superior cross-scene generalization. However, while many methods focus on geometric consistency, they often neglect the potential of text-driven guidance to enhance semantic understanding, which is crucial for accurately reconstructing fine-grained details in complex scenes. To address this limitation, we propose TextSplat--the first text-driven Generalizable Gaussian Splatting framework. By employing a text-guided fusion of diverse semantic cues, our framework learns robust cross-modal feature representations that improve the alignment of geometric and semantic information, producing high-fidelity 3D reconstructions. Specifically, our framework employs three parallel modules to obtain complementary representations: the Diffusion Prior Depth Estimator for accurate depth information, the Semantic Aware Segmentation Network for detailed semantic information, and the Multi-View Interaction Network for refined cross-view features. Then, in the Text-Guided Semantic Fusion Module, these representations are integrated via the text-guided and attention-based feature aggregation mechanism, resulting in enhanced 3D Gaussian parameters enriched with detailed semantic cues. Experimental results on various benchmark datasets demonstrate improved performance compared to existing methods across multiple evaluation metrics, validating the effectiveness of our framework. The code will be publicly available.
Abstract:Color plays an important role in human perception and usually provides critical clues in visual reasoning. However, it is unclear whether and how vision-language models (VLMs) can perceive, understand, and leverage color as humans. This paper introduces ColorBench, an innovative benchmark meticulously crafted to assess the capabilities of VLMs in color understanding, including color perception, reasoning, and robustness. By curating a suite of diverse test scenarios, with grounding in real applications, ColorBench evaluates how these models perceive colors, infer meanings from color-based cues, and maintain consistent performance under varying color transformations. Through an extensive evaluation of 32 VLMs with varying language models and vision encoders, our paper reveals some undiscovered findings: (i) The scaling law (larger models are better) still holds on ColorBench, while the language model plays a more important role than the vision encoder. (ii) However, the performance gaps across models are relatively small, indicating that color understanding has been largely neglected by existing VLMs. (iii) CoT reasoning improves color understanding accuracies and robustness, though they are vision-centric tasks. (iv) Color clues are indeed leveraged by VLMs on ColorBench but they can also mislead models in some tasks. These findings highlight the critical limitations of current VLMs and underscore the need to enhance color comprehension. Our ColorBenchcan serve as a foundational tool for advancing the study of human-level color understanding of multimodal AI.
Abstract:We propose LauraTSE, an Auto-Regressive Decoder-Only Language Model for Target Speaker Extraction (TSE) based on the LauraGPT backbone. It employs a small-scale auto-regressive decoder-only language model which takes the continuous representations for both the mixture and the reference speeches and produces the first few layers of the target speech's discrete codec representations. In addition, a one-step encoder-only language model reconstructs the sum of the predicted codec embeddings using both the mixture and the reference information. Our approach achieves superior or comparable performance to existing generative and discriminative TSE models. To the best of our knowledge, LauraTSE is the first single-task TSE model to leverage an auto-regressive decoder-only language model as the backbone.
Abstract:Orthogonal frequency division multiplexing - integrated sensing and communication (OFDM-ISAC) has emerged as a key enabler for future wireless networks, leveraging the widely adopted OFDM waveform to seamlessly integrate wireless communication and radar sensing within a unified framework. In this paper, we propose adaptive resource allocation strategies for OFDM-ISAC systems to achieve optimal trade-offs between diverse sensing requirements and communication quality-of-service (QoS). We first develop a comprehensive resource allocation framework for OFDM-ISAC systems, deriving closed-form expressions for key sensing performance metrics, including delay resolution, Doppler resolution, delay-Doppler peak sidelobe level (PSL), and received signal-to-noise ratio (SNR). Building on this theoretical foundation, we introduce two novel resource allocation algorithms tailored to distinct sensing objectives. The resolution-oriented algorithm aims to maximize the weighted delay-Doppler resolution while satisfying constraints on PSL, sensing SNR, communication sum-rate, and transmit power. The sidelobe-oriented algorithm focuses on minimizing delay-Doppler PSL while satisfying resolution, SNR, and communication constraints. To efficiently solve the resulting non-convex optimization problems, we develop two adaptive resource allocation algorithms based on Dinkelbach's transform and majorization-minimization (MM). Extensive simulations validate the effectiveness of the proposed sensing-oriented adaptive resource allocation strategies in enhancing resolution and sidelobe suppression. Remarkably, these strategies achieve sensing performance nearly identical to that of a radar-only scheme, which dedicates all resources to sensing. These results highlight the superior performance of the proposed methods in optimizing the trade-off between sensing and communication objectives within OFDM-ISAC systems.
Abstract:We find that the response length of reasoning LLMs, whether trained by reinforcement learning or supervised learning, drastically increases for ill-posed questions with missing premises (MiP), ending up with redundant and ineffective thinking. This newly introduced scenario exacerbates the general overthinking issue to a large extent, which we name as the MiP-Overthinking. Such failures are against the ``test-time scaling law'' but have been widely observed on multiple datasets we curated with MiP, indicating the harm of cheap overthinking and a lack of critical thinking. Surprisingly, LLMs not specifically trained for reasoning exhibit much better performance on the MiP scenario, producing much shorter responses that quickly identify ill-posed queries. This implies a critical flaw of the current training recipe for reasoning LLMs, which does not encourage efficient thinking adequately, leading to the abuse of thinking patterns. To further investigate the reasons behind such failures, we conduct fine-grained analyses of the reasoning length, overthinking patterns, and location of critical thinking on different types of LLMs. Moreover, our extended ablation study reveals that the overthinking is contagious through the distillation of reasoning models' responses. These results improve the understanding of overthinking and shed novel insights into mitigating the problem.
Abstract:Multimodal reasoning, which integrates language and visual cues into problem solving and decision making, is a fundamental aspect of human intelligence and a crucial step toward artificial general intelligence. However, the evaluation of multimodal reasoning capabilities in Multimodal Large Language Models (MLLMs) remains inadequate. Most existing reasoning benchmarks are constrained by limited data size, narrow domain coverage, and unstructured knowledge distribution. To close these gaps, we introduce MDK12-Bench, a multi-disciplinary benchmark assessing the reasoning capabilities of MLLMs via real-world K-12 examinations. Spanning six disciplines (math, physics, chemistry, biology, geography, and information science), our benchmark comprises 140K reasoning instances across diverse difficulty levels from primary school to 12th grade. It features 6,827 instance-level knowledge point annotations based on a well-organized knowledge structure, detailed answer explanations, difficulty labels and cross-year partitions, providing a robust platform for comprehensive evaluation. Additionally, we present a novel dynamic evaluation framework to mitigate data contamination issues by bootstrapping question forms, question types, and image styles during evaluation. Extensive experiment on MDK12-Bench reveals the significant limitation of current MLLMs in multimodal reasoning. The findings on our benchmark provide insights into the development of the next-generation models. Our data and codes are available at https://github.com/LanceZPF/MDK12.