Alert button
Picture for Ryan A. Rossi

Ryan A. Rossi

Alert button

ToolChain*: Efficient Action Space Navigation in Large Language Models with A* Search

Oct 20, 2023
Yuchen Zhuang, Xiang Chen, Tong Yu, Saayan Mitra, Victor Bursztyn, Ryan A. Rossi, Somdeb Sarkhel, Chao Zhang

Large language models (LLMs) have demonstrated powerful decision-making and planning capabilities in solving complicated real-world problems. LLM-based autonomous agents can interact with diverse tools (e.g., functional APIs) and generate solution plans that execute a series of API function calls in a step-by-step manner. The multitude of candidate API function calls significantly expands the action space, amplifying the critical need for efficient action space navigation. However, existing methods either struggle with unidirectional exploration in expansive action spaces, trapped into a locally optimal solution, or suffer from exhaustively traversing all potential actions, causing inefficient navigation. To address these issues, we propose ToolChain*, an efficient tree search-based planning algorithm for LLM-based agents. It formulates the entire action space as a decision tree, where each node represents a possible API function call involved in a solution plan. By incorporating the A* search algorithm with task-specific cost function design, it efficiently prunes high-cost branches that may involve incorrect actions, identifying the most low-cost valid path as the solution. Extensive experiments on multiple tool-use and reasoning tasks demonstrate that ToolChain* efficiently balances exploration and exploitation within an expansive action space. It outperforms state-of-the-art baselines on planning and reasoning tasks by 3.1% and 3.5% on average while requiring 7.35x and 2.31x less time, respectively.

Viaarxiv icon

CulturaX: A Cleaned, Enormous, and Multilingual Dataset for Large Language Models in 167 Languages

Sep 17, 2023
Thuat Nguyen, Chien Van Nguyen, Viet Dac Lai, Hieu Man, Nghia Trung Ngo, Franck Dernoncourt, Ryan A. Rossi, Thien Huu Nguyen

Figure 1 for CulturaX: A Cleaned, Enormous, and Multilingual Dataset for Large Language Models in 167 Languages
Figure 2 for CulturaX: A Cleaned, Enormous, and Multilingual Dataset for Large Language Models in 167 Languages

The driving factors behind the development of large language models (LLMs) with impressive learning capabilities are their colossal model sizes and extensive training datasets. Along with the progress in natural language processing, LLMs have been frequently made accessible to the public to foster deeper investigation and applications. However, when it comes to training datasets for these LLMs, especially the recent state-of-the-art models, they are often not fully disclosed. Creating training data for high-performing LLMs involves extensive cleaning and deduplication to ensure the necessary level of quality. The lack of transparency for training data has thus hampered research on attributing and addressing hallucination and bias issues in LLMs, hindering replication efforts and further advancements in the community. These challenges become even more pronounced in multilingual learning scenarios, where the available multilingual text datasets are often inadequately collected and cleaned. Consequently, there is a lack of open-source and readily usable dataset to effectively train LLMs in multiple languages. To overcome this issue, we present CulturaX, a substantial multilingual dataset with 6.3 trillion tokens in 167 languages, tailored for LLM development. Our dataset undergoes meticulous cleaning and deduplication through a rigorous pipeline of multiple stages to accomplish the best quality for model training, including language identification, URL-based filtering, metric-based cleaning, document refinement, and data deduplication. CulturaX is fully released to the public in HuggingFace to facilitate research and advancements in multilingual LLMs: https://huggingface.co/datasets/uonlp/CulturaX.

* Ongoing Work 
Viaarxiv icon

PDFTriage: Question Answering over Long, Structured Documents

Sep 16, 2023
Jon Saad-Falcon, Joe Barrow, Alexa Siu, Ani Nenkova, Ryan A. Rossi, Franck Dernoncourt

Figure 1 for PDFTriage: Question Answering over Long, Structured Documents
Figure 2 for PDFTriage: Question Answering over Long, Structured Documents
Figure 3 for PDFTriage: Question Answering over Long, Structured Documents
Figure 4 for PDFTriage: Question Answering over Long, Structured Documents

Large Language Models (LLMs) have issues with document question answering (QA) in situations where the document is unable to fit in the small context length of an LLM. To overcome this issue, most existing works focus on retrieving the relevant context from the document, representing them as plain text. However, documents such as PDFs, web pages, and presentations are naturally structured with different pages, tables, sections, and so on. Representing such structured documents as plain text is incongruous with the user's mental model of these documents with rich structure. When a system has to query the document for context, this incongruity is brought to the fore, and seemingly trivial questions can trip up the QA system. To bridge this fundamental gap in handling structured documents, we propose an approach called PDFTriage that enables models to retrieve the context based on either structure or content. Our experiments demonstrate the effectiveness of the proposed PDFTriage-augmented models across several classes of questions where existing retrieval-augmented LLMs fail. To facilitate further research on this fundamental problem, we release our benchmark dataset consisting of 900+ human-generated questions over 80 structured documents from 10 different categories of question types for document QA.

Viaarxiv icon

Bias and Fairness in Large Language Models: A Survey

Sep 02, 2023
Isabel O. Gallegos, Ryan A. Rossi, Joe Barrow, Md Mehrab Tanjim, Sungchul Kim, Franck Dernoncourt, Tong Yu, Ruiyi Zhang, Nesreen K. Ahmed

Figure 1 for Bias and Fairness in Large Language Models: A Survey
Figure 2 for Bias and Fairness in Large Language Models: A Survey
Figure 3 for Bias and Fairness in Large Language Models: A Survey
Figure 4 for Bias and Fairness in Large Language Models: A Survey

Rapid advancements of large language models (LLMs) have enabled the processing, understanding, and generation of human-like text, with increasing integration into systems that touch our social sphere. Despite this success, these models can learn, perpetuate, and amplify harmful social biases. In this paper, we present a comprehensive survey of bias evaluation and mitigation techniques for LLMs. We first consolidate, formalize, and expand notions of social bias and fairness in natural language processing, defining distinct facets of harm and introducing several desiderata to operationalize fairness for LLMs. We then unify the literature by proposing three intuitive taxonomies, two for bias evaluation, namely metrics and datasets, and one for mitigation. Our first taxonomy of metrics for bias evaluation disambiguates the relationship between metrics and evaluation datasets, and organizes metrics by the different levels at which they operate in a model: embeddings, probabilities, and generated text. Our second taxonomy of datasets for bias evaluation categorizes datasets by their structure as counterfactual inputs or prompts, and identifies the targeted harms and social groups; we also release a consolidation of publicly-available datasets for improved access. Our third taxonomy of techniques for bias mitigation classifies methods by their intervention during pre-processing, in-training, intra-processing, and post-processing, with granular subcategories that elucidate research trends. Finally, we identify open problems and challenges for future work. Synthesizing a wide range of recent research, we aim to provide a clear guide of the existing literature that empowers researchers and practitioners to better understand and prevent the propagation of bias in LLMs.

Viaarxiv icon

Knowledge Graph Prompting for Multi-Document Question Answering

Aug 22, 2023
Yu Wang, Nedim Lipka, Ryan A. Rossi, Alexa Siu, Ruiyi Zhang, Tyler Derr

Figure 1 for Knowledge Graph Prompting for Multi-Document Question Answering
Figure 2 for Knowledge Graph Prompting for Multi-Document Question Answering
Figure 3 for Knowledge Graph Prompting for Multi-Document Question Answering
Figure 4 for Knowledge Graph Prompting for Multi-Document Question Answering

The 'pre-train, prompt, predict' paradigm of large language models (LLMs) has achieved remarkable success in open-domain question answering (OD-QA). However, few works explore this paradigm in the scenario of multi-document question answering (MD-QA), a task demanding a thorough understanding of the logical associations among the contents and structures of different documents. To fill this crucial gap, we propose a Knowledge Graph Prompting (KGP) method to formulate the right context in prompting LLMs for MD-QA, which consists of a graph construction module and a graph traversal module. For graph construction, we create a knowledge graph (KG) over multiple documents with nodes symbolizing passages or document structures (e.g., pages/tables), and edges denoting the semantic/lexical similarity between passages or intra-document structural relations. For graph traversal, we design an LM-guided graph traverser that navigates across nodes and gathers supporting passages assisting LLMs in MD-QA. The constructed graph serves as the global ruler that regulates the transitional space among passages and reduces retrieval latency. Concurrently, the LM-guided traverser acts as a local navigator that gathers pertinent context to progressively approach the question and guarantee retrieval quality. Extensive experiments underscore the efficacy of KGP for MD-QA, signifying the potential of leveraging graphs in enhancing the prompt design for LLMs. Our code is at https://github.com/YuWVandy/KG-LLM-MDQA.

Viaarxiv icon

Okapi: Instruction-tuned Large Language Models in Multiple Languages with Reinforcement Learning from Human Feedback

Aug 02, 2023
Viet Dac Lai, Chien Van Nguyen, Nghia Trung Ngo, Thuat Nguyen, Franck Dernoncourt, Ryan A. Rossi, Thien Huu Nguyen

Figure 1 for Okapi: Instruction-tuned Large Language Models in Multiple Languages with Reinforcement Learning from Human Feedback
Figure 2 for Okapi: Instruction-tuned Large Language Models in Multiple Languages with Reinforcement Learning from Human Feedback
Figure 3 for Okapi: Instruction-tuned Large Language Models in Multiple Languages with Reinforcement Learning from Human Feedback
Figure 4 for Okapi: Instruction-tuned Large Language Models in Multiple Languages with Reinforcement Learning from Human Feedback

A key technology for the development of large language models (LLMs) involves instruction tuning that helps align the models' responses with human expectations to realize impressive learning abilities. Two major approaches for instruction tuning characterize supervised fine-tuning (SFT) and reinforcement learning from human feedback (RLHF), which are currently applied to produce the best commercial LLMs (e.g., ChatGPT). To improve the accessibility of LLMs for research and development efforts, various instruction-tuned open-source LLMs have also been introduced recently, e.g., Alpaca, Vicuna, to name a few. However, existing open-source LLMs have only been instruction-tuned for English and a few popular languages, thus hindering their impacts and accessibility to many other languages in the world. Among a few very recent work to explore instruction tuning for LLMs in multiple languages, SFT has been used as the only approach to instruction-tune LLMs for multiple languages. This has left a significant gap for fine-tuned LLMs based on RLHF in diverse languages and raised important questions on how RLHF can boost the performance of multilingual instruction tuning. To overcome this issue, we present Okapi, the first system with instruction-tuned LLMs based on RLHF for multiple languages. Okapi introduces instruction and response-ranked data in 26 diverse languages to facilitate the experiments and development of future multilingual LLM research. We also present benchmark datasets to enable the evaluation of generative LLMs in multiple languages. Our experiments demonstrate the advantages of RLHF for multilingual instruction over SFT for different base models and datasets. Our framework and resources are released at https://github.com/nlp-uoregon/Okapi.

Viaarxiv icon

FigCaps-HF: A Figure-to-Caption Generative Framework and Benchmark with Human Feedback

Jul 20, 2023
Ashish Singh, Prateek Agarwal, Zixuan Huang, Arpita Singh, Tong Yu, Sungchul Kim, Victor Bursztyn, Nikos Vlassis, Ryan A. Rossi

Figure 1 for FigCaps-HF: A Figure-to-Caption Generative Framework and Benchmark with Human Feedback
Figure 2 for FigCaps-HF: A Figure-to-Caption Generative Framework and Benchmark with Human Feedback
Figure 3 for FigCaps-HF: A Figure-to-Caption Generative Framework and Benchmark with Human Feedback
Figure 4 for FigCaps-HF: A Figure-to-Caption Generative Framework and Benchmark with Human Feedback

Captions are crucial for understanding scientific visualizations and documents. Existing captioning methods for scientific figures rely on figure-caption pairs extracted from documents for training, many of which fall short with respect to metrics like helpfulness, explainability, and visual-descriptiveness [15] leading to generated captions being misaligned with reader preferences. To enable the generation of high-quality figure captions, we introduce FigCaps-HF a new framework for figure-caption generation that can incorporate domain expert feedback in generating captions optimized for reader preferences. Our framework comprises of 1) an automatic method for evaluating quality of figure-caption pairs, 2) a novel reinforcement learning with human feedback (RLHF) method to optimize a generative figure-to-caption model for reader preferences. We demonstrate the effectiveness of our simple learning framework by improving performance over standard fine-tuning across different types of models. In particular, when using BLIP as the base model, our RLHF framework achieves a mean gain of 35.7%, 16.9%, and 9% in ROUGE, BLEU, and Meteor, respectively. Finally, we release a large-scale benchmark dataset with human feedback on figure-caption pairs to enable further evaluation and development of RLHF techniques for this problem.

* 19 pages, 4 figures. Benchmark Documentation: https://figcapshf.github.io/ 
Viaarxiv icon

Fairness-Aware Graph Neural Networks: A Survey

Jul 08, 2023
April Chen, Ryan A. Rossi, Namyong Park, Puja Trivedi, Yu Wang, Tong Yu, Sungchul Kim, Franck Dernoncourt, Nesreen K. Ahmed

Figure 1 for Fairness-Aware Graph Neural Networks: A Survey
Figure 2 for Fairness-Aware Graph Neural Networks: A Survey
Figure 3 for Fairness-Aware Graph Neural Networks: A Survey

Graph Neural Networks (GNNs) have become increasingly important due to their representational power and state-of-the-art predictive performance on many fundamental learning tasks. Despite this success, GNNs suffer from fairness issues that arise as a result of the underlying graph data and the fundamental aggregation mechanism that lies at the heart of the large class of GNN models. In this article, we examine and categorize fairness techniques for improving the fairness of GNNs. Previous work on fair GNN models and techniques are discussed in terms of whether they focus on improving fairness during a preprocessing step, during training, or in a post-processing phase. Furthermore, we discuss how such techniques can be used together whenever appropriate, and highlight the advantages and intuition as well. We also introduce an intuitive taxonomy for fairness evaluation metrics including graph-level fairness, neighborhood-level fairness, embedding-level fairness, and prediction-level fairness metrics. In addition, graph datasets that are useful for benchmarking the fairness of GNN models are summarized succinctly. Finally, we highlight key open problems and challenges that remain to be addressed.

Viaarxiv icon

A Model-free Closeness-of-influence Test for Features in Supervised Learning

Jun 20, 2023
Mohammad Mehrabi, Ryan A. Rossi

Figure 1 for A Model-free Closeness-of-influence Test for Features in Supervised Learning
Figure 2 for A Model-free Closeness-of-influence Test for Features in Supervised Learning
Figure 3 for A Model-free Closeness-of-influence Test for Features in Supervised Learning
Figure 4 for A Model-free Closeness-of-influence Test for Features in Supervised Learning

Understanding the effect of a feature vector $x \in \mathbb{R}^d$ on the response value (label) $y \in \mathbb{R}$ is the cornerstone of many statistical learning problems. Ideally, it is desired to understand how a set of collected features combine together and influence the response value, but this problem is notoriously difficult, due to the high-dimensionality of data and limited number of labeled data points, among many others. In this work, we take a new perspective on this problem, and we study the question of assessing the difference of influence that the two given features have on the response value. We first propose a notion of closeness for the influence of features, and show that our definition recovers the familiar notion of the magnitude of coefficients in the parametric model. We then propose a novel method to test for the closeness of influence in general model-free supervised learning problems. Our proposed test can be used with finite number of samples with control on type I error rate, no matter the ground truth conditional law $\mathcal{L}(Y |X)$. We analyze the power of our test for two general learning problems i) linear regression, and ii) binary classification under mixture of Gaussian models, and show that under the proper choice of score function, an internal component of our test, with sufficient number of samples will achieve full statistical power. We evaluate our findings through extensive numerical simulations, specifically we adopt the datamodel framework (Ilyas, et al., 2022) for CIFAR-10 dataset to identify pairs of training samples with different influence on the trained model via optional black box training mechanisms.

Viaarxiv icon