Abstract:Harmful fine-tuning (HFT), performed directly on open-source LLMs or through Fine-tuning-as-a-Service, breaks safety alignment and poses significant threats. Existing methods aim to mitigate HFT risks by learning robust representation on alignment data or making harmful data unlearnable, but they treat each data sample equally, leaving data vulnerability patterns understudied. In this work, we reveal that certain subsets of alignment data are consistently more prone to forgetting during HFT across different fine-tuning tasks. Inspired by these findings, we propose Vulnerability-Aware Alignment (VAA), which estimates data vulnerability, partitions data into "vulnerable" and "invulnerable" groups, and encourages balanced learning using a group distributionally robust optimization (Group DRO) framework. Specifically, VAA learns an adversarial sampler that samples examples from the currently underperforming group and then applies group-dependent adversarial perturbations to the data during training, aiming to encourage a balanced learning process across groups. Experiments across four fine-tuning tasks demonstrate that VAA significantly reduces harmful scores while preserving downstream task performance, outperforming state-of-the-art baselines.
Abstract:Recent advances in video diffusion models have driven rapid progress in video editing techniques. However, video object removal, a critical subtask of video editing, remains challenging due to issues such as hallucinated objects and visual artifacts. Furthermore, existing methods often rely on computationally expensive sampling procedures and classifier-free guidance (CFG), resulting in slow inference. To address these limitations, we propose MiniMax-Remover, a novel two-stage video object removal approach. Motivated by the observation that text condition is not best suited for this task, we simplify the pretrained video generation model by removing textual input and cross-attention layers, resulting in a more lightweight and efficient model architecture in the first stage. In the second stage, we distilled our remover on successful videos produced by the stage-1 model and curated by human annotators, using a minimax optimization strategy to further improve editing quality and inference speed. Specifically, the inner maximization identifies adversarial input noise ("bad noise") that makes failure removals, while the outer minimization step trains the model to generate high-quality removal results even under such challenging conditions. As a result, our method achieves a state-of-the-art video object removal results with as few as 6 sampling steps and doesn't rely on CFG, significantly improving inference efficiency. Extensive experiments demonstrate the effectiveness and superiority of MiniMax-Remover compared to existing methods. Codes and Videos are available at: https://minimax-remover.github.io.
Abstract:Existing Task-Oriented Dialogue (TOD) systems primarily focus on single-session dialogues, limiting their effectiveness in long-term memory augmentation. To address this challenge, we introduce a MS-TOD dataset, the first multi-session TOD dataset designed to retain long-term memory across sessions, enabling fewer turns and more efficient task completion. This defines a new benchmark task for evaluating long-term memory in multi-session TOD. Based on this new dataset, we propose a Memory-Active Policy (MAP) that improves multi-session dialogue efficiency through a two-stage approach. 1) Memory-Guided Dialogue Planning retrieves intent-aligned history, identifies key QA units via a memory judger, refines them by removing redundant questions, and generates responses based on the reconstructed memory. 2) Proactive Response Strategy detects and correct errors or omissions, ensuring efficient and accurate task completion. We evaluate MAP on MS-TOD dataset, focusing on response quality and effectiveness of the proactive strategy. Experiments on MS-TOD demonstrate that MAP significantly improves task success and turn efficiency in multi-session scenarios, while maintaining competitive performance on conventional single-session tasks.
Abstract:Recent advances in Large Language Models (LLMs) have demonstrated remarkable performance in Contextual Question Answering (CQA). However, prior approaches typically employ elaborate reasoning strategies regardless of question complexity, leading to low adaptability. Recent efficient test-time scaling methods introduce budget constraints or early stop mechanisms to avoid overthinking for straightforward questions. But they add human bias to the reasoning process and fail to leverage models' inherent reasoning capabilities. To address these limitations, we present T$^2$: Think-to-Think, a novel framework that dynamically adapts reasoning depth based on question complexity. T$^2$ leverages the insight that if an LLM can effectively solve similar questions using specific reasoning strategies, it can apply the same strategy to the original question. This insight enables to adoption of concise reasoning for straightforward questions while maintaining detailed analysis for complex problems. T$^2$ works through four key steps: decomposing questions into structural elements, generating similar examples with candidate reasoning strategies, evaluating these strategies against multiple criteria, and applying the most appropriate strategy to the original question. Experimental evaluation across seven diverse CQA benchmarks demonstrates that T$^2$ not only achieves higher accuracy than baseline methods but also reduces computational overhead by up to 25.2\%.
Abstract:Mathematical reasoning through Chain-of-Thought (CoT) has emerged as a powerful capability of Large Language Models (LLMs), which can be further enhanced through Test-Time Scaling (TTS) methods like Beam Search and DVTS. However, these methods, despite improving accuracy by allocating more computational resources during inference, often suffer from path homogenization and inefficient use of intermediate results. To address these limitations, we propose Stepwise Reasoning Checkpoint Analysis (SRCA), a framework that introduces checkpoints between reasoning steps. It incorporates two key strategies: (1) Answer-Clustered Search, which groups reasoning paths by their intermediate checkpoint answers to maintain diversity while ensuring quality, and (2) Checkpoint Candidate Augmentation, which leverages all intermediate answers for final decision-making. Our approach effectively reduces path homogenization and creates a fault-tolerant mechanism by utilizing high-quality intermediate results. Experimental results show that SRCA improves reasoning accuracy compared to existing TTS methods across various mathematical datasets.
Abstract:Memes have emerged as a popular form of multimodal online communication, where their interpretation heavily depends on the specific context in which they appear. Current approaches predominantly focus on isolated meme analysis, either for harmful content detection or standalone interpretation, overlooking a fundamental challenge: the same meme can express different intents depending on its conversational context. This oversight creates an evaluation gap: although humans intuitively recognize how context shapes meme interpretation, Large Vision Language Models (LVLMs) can hardly understand context-dependent meme intent. To address this critical limitation, we introduce MemeReaCon, a novel benchmark specifically designed to evaluate how LVLMs understand memes in their original context. We collected memes from five different Reddit communities, keeping each meme's image, the post text, and user comments together. We carefully labeled how the text and meme work together, what the poster intended, how the meme is structured, and how the community responded. Our tests with leading LVLMs show a clear weakness: models either fail to interpret critical information in the contexts, or overly focus on visual details while overlooking communicative purpose. MemeReaCon thus serves both as a diagnostic tool exposing current limitations and as a challenging benchmark to drive development toward more sophisticated LVLMs of the context-aware understanding.
Abstract:Inference-time scaling has attracted much attention which significantly enhance the performance of Large Language Models (LLMs) in complex reasoning tasks by increasing the length of Chain-of-Thought. These longer intermediate reasoning rationales embody various meta-reasoning skills in human cognition, such as reflection and decomposition, being difficult to create and acquire. In this work, we introduce \textit{Self-Reasoning Language Model} (SRLM), where the model itself can synthesize longer CoT data and iteratively improve performance through self-training. By incorporating a few demonstration examples (i.e., 1,000 samples) on how to unfold hidden reasoning chains from existing responses, which act as a reasoning catalyst, we demonstrate that SRLM not only enhances the model's initial performance but also ensures more stable and consistent improvements in subsequent iterations. Our proposed SRLM achieves an average absolute improvement of more than $+2.5$ points across five reasoning tasks: MMLU, GSM8K, ARC-C, HellaSwag, and BBH on two backbone models. Moreover, it brings more improvements with more times of sampling during inference, such as absolute $+7.89$ average improvement with $64$ sampling times, revealing the in-depth, diverse and creative reasoning paths in SRLM against the strong baseline.
Abstract:Existing benchmarks that assess Language Models (LMs) as Language Agents (LAs) for tool use primarily focus on stateless, single-turn interactions or partial evaluations, such as tool selection in a single turn, overlooking the inherent stateful nature of interactions in multi-turn applications. To fulfill this gap, we propose \texttt{DialogTool}, a multi-turn dialogue dataset with stateful tool interactions considering the whole life cycle of tool use, across six key tasks in three stages: 1) \textit{tool creation}; 2) \textit{tool utilization}: tool awareness, tool selection, tool execution; and 3) \textit{role-consistent response}: response generation and role play. Furthermore, we build \texttt{VirtualMobile} -- an embodied virtual mobile evaluation environment to simulate API calls and assess the robustness of the created APIs\footnote{We will use tools and APIs alternatively, there are no significant differences between them in this paper.}. Taking advantage of these artifacts, we conduct comprehensive evaluation on 13 distinct open- and closed-source LLMs and provide detailed analysis at each stage, revealing that the existing state-of-the-art LLMs still cannot perform well to use tools over long horizons.
Abstract:Memory is a fundamental component of AI systems, underpinning large language models (LLMs) based agents. While prior surveys have focused on memory applications with LLMs, they often overlook the atomic operations that underlie memory dynamics. In this survey, we first categorize memory representations into parametric, contextual structured, and contextual unstructured and then introduce six fundamental memory operations: Consolidation, Updating, Indexing, Forgetting, Retrieval, and Compression. We systematically map these operations to the most relevant research topics across long-term, long-context, parametric modification, and multi-source memory. By reframing memory systems through the lens of atomic operations and representation types, this survey provides a structured and dynamic perspective on research, benchmark datasets, and tools related to memory in AI, clarifying the functional interplay in LLMs based agents while outlining promising directions for future research\footnote{The paper list, datasets, methods and tools are available at \href{https://github.com/Elvin-Yiming-Du/Survey_Memory_in_AI}{https://github.com/Elvin-Yiming-Du/Survey\_Memory\_in\_AI}.}.
Abstract:Tool-integrated reasoning (TIR) augments large language models (LLMs) with the ability to invoke external tools, such as search engines and code interpreters, to solve tasks beyond the capabilities of language-only reasoning. While reinforcement learning (RL) has shown promise in improving TIR by optimizing final answer correctness, existing approaches often overlook the efficiency and cost associated with tool usage. This can lead to suboptimal behavior, including excessive tool calls that increase computational and financial overhead, or insufficient tool use that compromises answer quality. In this work, we propose Optimal Tool Call-controlled Policy Optimization (OTC-PO), a simple yet effective RL-based framework that encourages models to produce accurate answers with minimal tool calls. Our method introduces a tool-integrated reward that jointly considers correctness and tool efficiency, promoting high tool productivity. We instantiate this framework within both Proximal Policy Optimization (PPO) and Group Relative Preference Optimization (GRPO), resulting in OTC-PPO and OTC-GRPO. Experiments with Qwen-2.5 and Qwen-Math across multiple QA benchmarks show that our approach reduces tool calls by up to 73.1\% and improves tool productivity by up to 229.4\%, while maintaining comparable answer accuracy. To the best of our knowledge, this is the first RL-based framework that explicitly optimizes tool-use efficiency in TIR.