Abstract:Modern large reasoning models demonstrate impressive problem-solving capabilities by employing sophisticated reasoning strategies. However, they often struggle to balance efficiency and effectiveness, frequently generating unnecessarily lengthy reasoning chains for simple problems. In this work, we propose AdaCtrl, a novel framework to support both difficulty-aware adaptive reasoning budget allocation and explicit user control over reasoning depth. AdaCtrl dynamically adjusts its reasoning length based on self-assessed problem difficulty, while also allowing users to manually control the budget to prioritize either efficiency or effectiveness. This is achieved through a two-stage training pipeline: an initial cold-start fine-tuning phase to instill the ability to self-aware difficulty and adjust reasoning budget, followed by a difficulty-aware reinforcement learning (RL) stage that refines the model's adaptive reasoning strategies and calibrates its difficulty assessments based on its evolving capabilities during online training. To enable intuitive user interaction, we design explicit length-triggered tags that function as a natural interface for budget control. Empirical results show that AdaCtrl adapts reasoning length based on estimated difficulty, compared to the standard training baseline that also incorporates fine-tuning and RL, it yields performance improvements and simultaneously reduces response length by 10.06% and 12.14% on the more challenging AIME2024 and AIME2025 datasets, which require elaborate reasoning, and by 62.05% and 91.04% on the MATH500 and GSM8K datasets, where more concise responses are sufficient. Furthermore, AdaCtrl enables precise user control over the reasoning budget, allowing for tailored responses to meet specific needs.
Abstract:Inference-time scaling has attracted much attention which significantly enhance the performance of Large Language Models (LLMs) in complex reasoning tasks by increasing the length of Chain-of-Thought. These longer intermediate reasoning rationales embody various meta-reasoning skills in human cognition, such as reflection and decomposition, being difficult to create and acquire. In this work, we introduce \textit{Self-Reasoning Language Model} (SRLM), where the model itself can synthesize longer CoT data and iteratively improve performance through self-training. By incorporating a few demonstration examples (i.e., 1,000 samples) on how to unfold hidden reasoning chains from existing responses, which act as a reasoning catalyst, we demonstrate that SRLM not only enhances the model's initial performance but also ensures more stable and consistent improvements in subsequent iterations. Our proposed SRLM achieves an average absolute improvement of more than $+2.5$ points across five reasoning tasks: MMLU, GSM8K, ARC-C, HellaSwag, and BBH on two backbone models. Moreover, it brings more improvements with more times of sampling during inference, such as absolute $+7.89$ average improvement with $64$ sampling times, revealing the in-depth, diverse and creative reasoning paths in SRLM against the strong baseline.
Abstract:Tool-integrated reasoning (TIR) augments large language models (LLMs) with the ability to invoke external tools, such as search engines and code interpreters, to solve tasks beyond the capabilities of language-only reasoning. While reinforcement learning (RL) has shown promise in improving TIR by optimizing final answer correctness, existing approaches often overlook the efficiency and cost associated with tool usage. This can lead to suboptimal behavior, including excessive tool calls that increase computational and financial overhead, or insufficient tool use that compromises answer quality. In this work, we propose Optimal Tool Call-controlled Policy Optimization (OTC-PO), a simple yet effective RL-based framework that encourages models to produce accurate answers with minimal tool calls. Our method introduces a tool-integrated reward that jointly considers correctness and tool efficiency, promoting high tool productivity. We instantiate this framework within both Proximal Policy Optimization (PPO) and Group Relative Preference Optimization (GRPO), resulting in OTC-PPO and OTC-GRPO. Experiments with Qwen-2.5 and Qwen-Math across multiple QA benchmarks show that our approach reduces tool calls by up to 73.1\% and improves tool productivity by up to 229.4\%, while maintaining comparable answer accuracy. To the best of our knowledge, this is the first RL-based framework that explicitly optimizes tool-use efficiency in TIR.
Abstract:While reasoning models (e.g., DeepSeek R1) trained with reinforcement learning (RL), excel in textual reasoning, they struggle in scenarios requiring structured problem-solving, such as geometric reasoning, concise computation, or complex equation solving-areas where computational tools like code interpreters (CI) demonstrate distinct advantages. To bridge this gap, we propose ReTool, which enhances long-form reasoning with tool-integrated learning, including two key features: (1) dynamic interleaving of real-time code execution within natural language reasoning processes, and (2) an automated RL paradigm that allows policy rollouts with multi-turn real-time code execution and teaches the model in learning when and how to invoke tools based on outcome feedback. ReTool employs a systematic training framework, beginning with synthetic cold-start data generation to produce code-augmented long-form reasoning traces for fine-tuning base models. Subsequent RL training leverages task outcomes as rewards to iteratively refine the model's tool use strategy, enabling autonomous discovery of optimal tool invocation patterns without human priors. Experiments on the challenging MATH Olympiad benchmark AIME demonstrate ReTool's superiority: Our 32B model achieves 67% accuracy with 400 training steps, outperforming text-based RL baseline (40% accuracy, 1080 steps) in efficiency and performance. Remarkably, ReTool-32B attains 72.5% accuracy in extended settings, surpassing OpenAI's o1-preview by 27.9%. Further analysis reveals emergent behaviors such as code self-correction, signaling an ''aha moment'' in which the model autonomously masters adaptive tool use. These findings highlight the promise of outcome-driven tool integration for advancing complex mathematical reasoning and offer new insights into hybrid neuro-symbolic systems.
Abstract:This paper introduces UI-TARS, a native GUI agent model that solely perceives the screenshots as input and performs human-like interactions (e.g., keyboard and mouse operations). Unlike prevailing agent frameworks that depend on heavily wrapped commercial models (e.g., GPT-4o) with expert-crafted prompts and workflows, UI-TARS is an end-to-end model that outperforms these sophisticated frameworks. Experiments demonstrate its superior performance: UI-TARS achieves SOTA performance in 10+ GUI agent benchmarks evaluating perception, grounding, and GUI task execution. Notably, in the OSWorld benchmark, UI-TARS achieves scores of 24.6 with 50 steps and 22.7 with 15 steps, outperforming Claude (22.0 and 14.9 respectively). In AndroidWorld, UI-TARS achieves 46.6, surpassing GPT-4o (34.5). UI-TARS incorporates several key innovations: (1) Enhanced Perception: leveraging a large-scale dataset of GUI screenshots for context-aware understanding of UI elements and precise captioning; (2) Unified Action Modeling, which standardizes actions into a unified space across platforms and achieves precise grounding and interaction through large-scale action traces; (3) System-2 Reasoning, which incorporates deliberate reasoning into multi-step decision making, involving multiple reasoning patterns such as task decomposition, reflection thinking, milestone recognition, etc. (4) Iterative Training with Reflective Online Traces, which addresses the data bottleneck by automatically collecting, filtering, and reflectively refining new interaction traces on hundreds of virtual machines. Through iterative training and reflection tuning, UI-TARS continuously learns from its mistakes and adapts to unforeseen situations with minimal human intervention. We also analyze the evolution path of GUI agents to guide the further development of this domain.
Abstract:Slot filling and intent detection are two highly correlated tasks in spoken language understanding (SLU). Recent SLU research attempts to explore zero-shot prompting techniques in large language models to alleviate the data scarcity problem. Nevertheless, the existing prompting work ignores the cross-task interaction information for SLU, which leads to sub-optimal performance. To solve this problem, we present the pioneering work of Cross-task Interactive Prompting (CroPrompt) for SLU, which enables the model to interactively leverage the information exchange across the correlated tasks in SLU. Additionally, we further introduce a multi-task self-consistency mechanism to mitigate the error propagation caused by the intent information injection. We conduct extensive experiments on the standard SLU benchmark and the results reveal that CroPrompt consistently outperforms the existing prompting approaches. In addition, the multi-task self-consistency mechanism can effectively ease the error propagation issue, thereby enhancing the performance. We hope this work can inspire more research on cross-task prompting for SLU.
Abstract:Developing Large Language Models (LLMs) with robust long-context capabilities has been the recent research focus, resulting in the emergence of long-context LLMs proficient in Chinese. However, the evaluation of these models remains underdeveloped due to a lack of benchmarks. To address this gap, we present CLongEval, a comprehensive Chinese benchmark for evaluating long-context LLMs. CLongEval is characterized by three key features: (1) Sufficient data volume, comprising 7 distinct tasks and 7,267 examples; (2) Broad applicability, accommodating to models with context windows size from 1K to 100K; (3) High quality, with over 2,000 manually annotated question-answer pairs in addition to the automatically constructed labels. With CLongEval, we undertake a comprehensive assessment of 6 open-source long-context LLMs and 2 leading commercial counterparts that feature both long-context abilities and proficiency in Chinese. We also provide in-depth analysis based on the empirical results, trying to shed light on the critical capabilities that present challenges in long-context settings. The dataset, evaluation scripts, and model outputs will be released.
Abstract:The recent trend of using Large Language Models (LLMs) as intelligent agents in real-world applications underscores the necessity for comprehensive evaluations of their capabilities, particularly in complex scenarios involving planning, creating, and using tools. However, existing benchmarks typically focus on simple synthesized queries that do not reflect real-world complexity, thereby offering limited perspectives in evaluating tool utilization. To address this issue, we present UltraTool, a novel benchmark designed to improve and evaluate LLMs' ability in tool utilization within real-world scenarios. UltraTool focuses on the entire process of using tools - from planning and creating to applying them in complex tasks. It emphasizes real-world complexities, demanding accurate, multi-step planning for effective problem-solving. A key feature of UltraTool is its independent evaluation of planning with natural language, which happens before tool usage and simplifies the task solving by mapping out the intermediate steps. Thus, unlike previous work, it eliminates the restriction of pre-defined toolset during planning. Through extensive experiments on various LLMs, we offer novel insights into the evaluation of capabilities of LLMs in tool utilization, thereby contributing a fresh perspective to this rapidly evolving field. The benchmark is publicly available at https://github.com/JoeYing1019/UltraTool.
Abstract:Multi-modal intent detection aims to utilize various modalities to understand the user's intentions, which is essential for the deployment of dialogue systems in real-world scenarios. The two core challenges for multi-modal intent detection are (1) how to effectively align and fuse different features of modalities and (2) the limited labeled multi-modal intent training data. In this work, we introduce a shallow-to-deep interaction framework with data augmentation (SDIF-DA) to address the above challenges. Firstly, SDIF-DA leverages a shallow-to-deep interaction module to progressively and effectively align and fuse features across text, video, and audio modalities. Secondly, we propose a ChatGPT-based data augmentation approach to automatically augment sufficient training data. Experimental results demonstrate that SDIF-DA can effectively align and fuse multi-modal features by achieving state-of-the-art performance. In addition, extensive analyses show that the introduced data augmentation approach can successfully distill knowledge from the large language model.
Abstract:Chain-of-thought (CoT) is capable of eliciting models to explicitly generate reasoning paths, thus promoting reasoning accuracy and attracting increasing attention. Specifically, zero-shot CoT achieves remarkable improvements in a wide range of reasoning tasks by simply instructing the LLM with the prompt "Let's think step by step!". Despite the success of zero-shot CoT, the existing zero-shot prompting techniques remain limited to a single language, making it challenging to generalize to other languages and hindering global development. In this work, we introduce cross-lingual prompting (CLP), aiming to improve zero-shot CoT reasoning across languages. Specifically, CLP consists of two main components: (1) cross-lingual alignment prompting and (2) task-specific solver prompting. The cross-lingual alignment prompting is responsible for aligning representations across different languages, whereas the task-specific solver prompting is used to generate the final chain of thoughts and results for the reasoning task. In addition, we further introduce cross-lingual self-consistent prompting (CLSP) to ensemble different reasoning paths across languages. Our experimental evaluations on several benchmarks demonstrate that CLP and CLSP significantly outperform the existing prompting methods and achieve state-of-the-art performance. We hope this work will inspire further breakthroughs in cross-lingual CoT.