Abstract:Writing compelling fiction is a multifaceted process combining elements such as crafting a plot, developing interesting characters, and using evocative language. While large language models (LLMs) show promise for story writing, they currently rely heavily on intricate prompting, which limits their use. We propose Agents' Room, a generation framework inspired by narrative theory, that decomposes narrative writing into subtasks tackled by specialized agents. To illustrate our method, we introduce Tell Me A Story, a high-quality dataset of complex writing prompts and human-written stories, and a novel evaluation framework designed specifically for assessing long narratives. We show that Agents' Room generates stories that are preferred by expert evaluators over those produced by baseline systems by leveraging collaboration and specialization to decompose the complex story writing task into tractable components. We provide extensive analysis with automated and human-based metrics of the generated output.
Abstract:The NLP community has recently shown a growing interest in leveraging Large Language Models (LLMs) for knowledge-intensive tasks, viewing LLMs as potential knowledge bases (KBs). However, the reliability and extent to which LLMs can function as KBs remain underexplored. While previous studies suggest LLMs can encode knowledge within their parameters, the amount of parametric knowledge alone is not sufficient to evaluate their effectiveness as KBs. This study defines criteria that a reliable LLM-as-KB should meet, focusing on factuality and consistency, and covering both seen and unseen knowledge. We develop several metrics based on these criteria and use them to evaluate 26 popular LLMs, while providing a comprehensive analysis of the effects of model size, instruction tuning, and in-context learning (ICL). Our results paint a worrying picture. Even a high-performant model like GPT-3.5-turbo is not factual or consistent, and strategies like ICL and fine-tuning are unsuccessful at making LLMs better KBs.
Abstract:Practical semantic parsers are expected to understand user utterances and map them to executable programs, even when these are ambiguous. We introduce a new benchmark, AMBROSIA, which we hope will inform and inspire the development of text-to-SQL parsers capable of recognizing and interpreting ambiguous requests. Our dataset contains questions showcasing three different types of ambiguity (scope ambiguity, attachment ambiguity, and vagueness), their interpretations, and corresponding SQL queries. In each case, the ambiguity persists even when the database context is provided. This is achieved through a novel approach that involves controlled generation of databases from scratch. We benchmark various LLMs on AMBROSIA, revealing that even the most advanced models struggle to identify and interpret ambiguity in questions.
Abstract:Characters are integral to long-form narratives, but are poorly understood by existing story analysis and generation systems. While prior work has simplified characters via graph-based methods and brief character descriptions, we aim to better tackle the problem of representing complex characters by taking inspiration from advice given to professional writers. We propose CHIRON, a new `character sheet' based representation that organizes and filters textual information about characters. We construct CHIRON sheets in two steps: a Generation Module that prompts an LLM for character information via question-answering and a Validation Module that uses automated reasoning and a domain-specific entailment model to eliminate false facts about a character. We validate CHIRON via the downstream task of masked-character prediction, where our experiments show CHIRON is better and more flexible than comparable summary-based baselines. We also show that metrics derived from CHIRON can be used to automatically infer character-centricity in stories, and that these metrics align with human judgments.
Abstract:Content moderators play a key role in keeping the conversation on social media healthy. While the high volume of content they need to judge represents a bottleneck to the moderation pipeline, no studies have explored how models could support them to make faster decisions. There is, by now, a vast body of research into detecting hate speech, sometimes explicitly motivated by a desire to help improve content moderation, but published research using real content moderators is scarce. In this work we investigate the effect of explanations on the speed of real-world moderators. Our experiments show that while generic explanations do not affect their speed and are often ignored, structured explanations lower moderators' decision making time by 7.4%.
Abstract:Although Large Language Models (LLMs) are effective in performing various NLP tasks, they still struggle to handle tasks that require extensive, real-world knowledge, especially when dealing with long-tail facts (facts related to long-tail entities). This limitation highlights the need to supplement LLMs with non-parametric knowledge. To address this issue, we analysed the effects of different types of non-parametric knowledge, including textual passage and knowledge graphs (KGs). Since LLMs have probably seen the majority of factual question-answering datasets already, to facilitate our analysis, we proposed a fully automatic pipeline for creating a benchmark that requires knowledge of long-tail facts for answering the involved questions. Using this pipeline, we introduce the LTGen benchmark. We evaluate state-of-the-art LLMs in different knowledge settings using the proposed benchmark. Our experiments show that LLMs alone struggle with answering these questions, especially when the long-tail level is high or rich knowledge is required. Nonetheless, the performance of the same models improved significantly when they were prompted with non-parametric knowledge. We observed that, in most cases, prompting LLMs with KG triples surpasses passage-based prompting using a state-of-the-art retriever. In addition, while prompting LLMs with both KG triples and documents does not consistently improve knowledge coverage, it can dramatically reduce hallucinations in the generated content.
Abstract:Experts in various fields routinely perform methodical writing tasks to plan, organize, and report their work. From a clinician writing a differential diagnosis for a patient, to a teacher writing a lesson plan for students, these tasks are pervasive, requiring to methodically generate structured long-form output for a given input. We develop a typology of methodical tasks structured in the form of a task objective, procedure, input, and output, and introduce DoLoMiTes, a novel benchmark with specifications for 519 such tasks elicited from hundreds of experts from across 25 fields. Our benchmark further contains specific instantiations of methodical tasks with concrete input and output examples (1,857 in total) which we obtain by collecting expert revisions of up to 10 model-generated examples of each task. We use these examples to evaluate contemporary language models highlighting that automating methodical tasks is a challenging long-form generation problem, as it requires performing complex inferences, while drawing upon the given context as well as domain knowledge.
Abstract:The increasing demand for the deployment of LLMs in information-seeking scenarios has spurred efforts in creating verifiable systems, which generate responses to queries along with supporting evidence. In this paper, we explore the attribution capabilities of plan-based models which have been recently shown to improve the faithfulness, grounding, and controllability of generated text. We conceptualize plans as a sequence of questions which serve as blueprints of the generated content and its organization. We propose two attribution models that utilize different variants of blueprints, an abstractive model where questions are generated from scratch, and an extractive model where questions are copied from the input. Experiments on long-form question-answering show that planning consistently improves attribution quality. Moreover, the citations generated by blueprint models are more accurate compared to those obtained from LLM-based pipelines lacking a planning component.
Abstract:In this paper we address the task of summarizing television shows, which touches key areas in AI research: complex reasoning, multiple modalities, and long narratives. We present a modular approach where separate components perform specialized sub-tasks which we argue affords greater flexibility compared to end-to-end methods. Our modules involve detecting scene boundaries, reordering scenes so as to minimize the number of cuts between different events, converting visual information to text, summarizing the dialogue in each scene, and fusing the scene summaries into a final summary for the entire episode. We also present a new metric, PREFS (Precision and Recall Evaluation of Summary FactS), to measure both precision and recall of generated summaries, which we decompose into atomic facts. Tested on the recently released SummScreen3D dataset Papalampidi and Lapata (2023), our method produces higher quality summaries than comparison models, as measured with ROUGE and our new fact-based metric.
Abstract:We propose a method for unsupervised abstractive opinion summarization, that combines the attributability and scalability of extractive approaches with the coherence and fluency of Large Language Models (LLMs). Our method, HIRO, learns an index structure that maps sentences to a path through a semantically organized discrete hierarchy. At inference time, we populate the index and use it to identify and retrieve clusters of sentences containing popular opinions from input reviews. Then, we use a pretrained LLM to generate a readable summary that is grounded in these extracted evidential clusters. The modularity of our approach allows us to evaluate its efficacy at each stage. We show that HIRO learns an encoding space that is more semantically structured than prior work, and generates summaries that are more representative of the opinions in the input reviews. Human evaluation confirms that HIRO generates more coherent, detailed and accurate summaries that are significantly preferred by annotators compared to prior work.