Abstract:Multi-modal Knowledge Graphs (MMKGs) have been widely applied across various domains for knowledge representation. However, the existing MMKGs are significantly fewer than required, and their construction faces numerous challenges, particularly in ensuring the selection of high-quality, contextually relevant images for knowledge graph enrichment. To address these challenges, we present a framework for constructing MMKGs from conventional KGs. Furthermore, to generate higher-quality images that are more relevant to the context in the given knowledge graph, we designed a neighbor selection method called Visualizable Structural Neighbor Selection (VSNS). This method consists of two modules: Visualizable Neighbor Selection (VNS) and Structural Neighbor Selection (SNS). The VNS module filters relations that are difficult to visualize, while the SNS module selects neighbors that most effectively capture the structural characteristics of the entity. To evaluate the quality of the generated images, we performed qualitative and quantitative evaluations on two datasets, MKG-Y and DB15K. The experimental results indicate that using the VSNS method to select neighbors results in higher-quality images that are more relevant to the knowledge graph.
Abstract:Large Language Models (LLMs) have shown remarkable capabilities in reasoning, exemplified by the success of OpenAI-o1 and DeepSeek-R1. However, integrating reasoning with external search processes remains challenging, especially for complex multi-hop questions requiring multiple retrieval steps. We propose ReSearch, a novel framework that trains LLMs to Reason with Search via reinforcement learning without using any supervised data on reasoning steps. Our approach treats search operations as integral components of the reasoning chain, where when and how to perform searches is guided by text-based thinking, and search results subsequently influence further reasoning. We train ReSearch on Qwen2.5-7B(-Instruct) and Qwen2.5-32B(-Instruct) models and conduct extensive experiments. Despite being trained on only one dataset, our models demonstrate strong generalizability across various benchmarks. Analysis reveals that ReSearch naturally elicits advanced reasoning capabilities such as reflection and self-correction during the reinforcement learning process.
Abstract:Recent advancements of in-context learning (ICL) show language models can significantly improve their performance when demonstrations are provided. However, little attention has been paid to model calibration and prediction confidence of ICL in cross-lingual scenarios. To bridge this gap, we conduct a thorough analysis of ICL for cross-lingual sentiment classification. Our findings suggest that ICL performs poorly in cross-lingual scenarios, exhibiting low accuracy and presenting high calibration errors. In response, we propose a novel approach, N2C2, which employs a -nearest neighbors augmented classifier for prediction confidence calibration. N2C2 narrows the prediction gap by leveraging a datastore of cached few-shot instances. Specifically, N2C2 integrates the predictions from the datastore and incorporates confidence-aware distribution, semantically consistent retrieval representation, and adaptive neighbor combination modules to effectively utilize the limited number of supporting instances. Evaluation on two multilingual sentiment classification datasets demonstrates that N2C2 outperforms traditional ICL. It surpasses fine tuning, prompt tuning and recent state-of-the-art methods in terms of accuracy and calibration errors.
Abstract:Unsupervised domain adaptation leverages abundant labeled data from various source domains to generalize onto unlabeled target data. Prior research has primarily focused on learning domain-invariant features across the source and target domains. However, these methods often require training a model using source domain data, which is time-consuming and can limit model usage for applications with different source data. This paper introduces a simple framework that utilizes the impressive generalization capabilities of Large Language Models (LLMs) for target data annotation without the need of source model training, followed by a novel similarity-based knowledge distillation loss. Our extensive experiments on cross-domain text classification reveal that our framework achieves impressive performance, specifically, 2.44\% accuracy improvement when compared to the SOTA method.
Abstract:In recent advancements, large language models (LLMs) have exhibited proficiency in code generation and chain-of-thought reasoning, laying the groundwork for tackling automatic formal planning tasks. This study evaluates the potential of LLMs to understand and generate Planning Domain Definition Language (PDDL), an essential representation in artificial intelligence planning. We conduct an extensive analysis across 20 distinct models spanning 7 major LLM families, both commercial and open-source. Our comprehensive evaluation sheds light on the zero-shot LLM capabilities of parsing, generating, and reasoning with PDDL. Our findings indicate that while some models demonstrate notable effectiveness in handling PDDL, others pose limitations in more complex scenarios requiring nuanced planning knowledge. These results highlight the promise and current limitations of LLMs in formal planning tasks, offering insights into their application and guiding future efforts in AI-driven planning paradigms.
Abstract:Large Language Models (LLMs) can enhance their capabilities as AI assistants by integrating external tools, allowing them to access a wider range of information. While recent LLMs are typically fine-tuned with tool usage examples during supervised fine-tuning (SFT), questions remain about their ability to develop robust tool-usage skills and can effectively generalize to unseen queries and tools. In this work, we present GenTool, a novel training framework that prepares LLMs for diverse generalization challenges in tool utilization. Our approach addresses two fundamental dimensions critical for real-world applications: Zero-to-One Generalization, enabling the model to address queries initially lacking a suitable tool by adopting and utilizing one when it becomes available, and Weak-to-Strong Generalization, allowing models to leverage enhanced versions of existing tools to solve queries. To achieve this, we develop synthetic training data simulating these two dimensions of tool usage and introduce a two-stage fine-tuning approach: optimizing tool ranking, then refining tool selection. Through extensive experiments across four generalization scenarios, we demonstrate that our method significantly enhances the tool-usage capabilities of LLMs ranging from 1B to 8B parameters, achieving performance that surpasses GPT-4o. Furthermore, our analysis also provides valuable insights into the challenges LLMs encounter in tool generalization.
Abstract:Large language models (LLMs) have demonstrated immense potential across various tasks. However, research for exploring and improving the capabilities of LLMs in interpreting graph structures remains limited. To address this gap, we conduct a comprehensive evaluation of prompting current open-source LLMs on graph-to-text generation tasks. Although we explored the optimal prompting strategies and proposed a novel and effective diversity-difficulty-based few-shot sample selection method, we found that the improvements from tuning-free approaches were incremental, as LLMs struggle with planning on complex graphs, particularly those with a larger number of triplets. To further improve LLMs in planning with graph sequences and grounding in truth, we introduce a new graph-to-text dataset, PlanGTG, annotated with two sub-tasks: reordering and attribution. Through extensive automatic and human evaluations, we demonstrate significant improvements in the quality of generated text from both few-shot learning and fine-tuning perspectives using the PlanGTG dataset. Our study paves the way for new research directions in graph-to-text generation. PlanGTG datasets can be found in https://github.com/probe2/kg_text.
Abstract:Retrieval-augmented generation systems rely on effective document retrieval capabilities. By design, conventional sparse or dense retrievers face challenges in multi-hop retrieval scenarios. In this paper, we present GeAR, which advances RAG performance through two key innovations: (i) graph expansion, which enhances any conventional base retriever, such as BM25, and (ii) an agent framework that incorporates graph expansion. Our evaluation demonstrates GeAR's superior retrieval performance on three multi-hop question answering datasets. Additionally, our system achieves state-of-the-art results with improvements exceeding 10% on the challenging MuSiQue dataset, while requiring fewer tokens and iterations compared to other multi-step retrieval systems.
Abstract:Large language models (LLMs) have demonstrated impressive capabilities in various reasoning tasks but face significant challenges with complex, knowledge-intensive multi-hop queries, particularly those involving new or long-tail knowledge. Existing benchmarks often fail to fully address these challenges. To bridge this gap, we introduce MINTQA (Multi-hop Question Answering on New and Tail Knowledge), a comprehensive benchmark to evaluate LLMs' capabilities in multi-hop reasoning across four critical dimensions: question handling strategy, sub-question generation, retrieval-augmented generation, and iterative or dynamic decomposition and retrieval. MINTQA comprises 10,479 question-answer pairs for evaluating new knowledge and 17,887 pairs for assessing long-tail knowledge, with each question equipped with corresponding sub-questions and answers. Our systematic evaluation of 22 state-of-the-art LLMs on MINTQA reveals significant limitations in their ability to handle complex knowledge base queries, particularly in handling new or unpopular knowledge. Our findings highlight critical challenges and offer insights for advancing multi-hop reasoning capabilities. The MINTQA benchmark is available at https://github.com/probe2/multi-hop/.
Abstract:In response to the call for agent-based solutions that leverage the ever-increasing capabilities of the deep models' ecosystem, we introduce Hive -- a comprehensive solution for selecting appropriate models and subsequently planning a set of atomic actions to satisfy the end-users' instructions. Hive operates over sets of models and, upon receiving natural language instructions (i.e. user queries), schedules and executes explainable plans of atomic actions. These actions can involve one or more of the available models to achieve the overall task, while respecting end-users specific constraints. Notably, Hive handles tasks that involve multi-modal inputs and outputs, enabling it to handle complex, real-world queries. Our system is capable of planning complex chains of actions while guaranteeing explainability, using an LLM-based formal logic backbone empowered by PDDL operations. We introduce the MuSE benchmark in order to offer a comprehensive evaluation of the multi-modal capabilities of agent systems. Our findings show that our framework redefines the state-of-the-art for task selection, outperforming other competing systems that plan operations across multiple models while offering transparency guarantees while fully adhering to user constraints.