Abstract:As large language models (LLMs) continue to scale, their enhanced performance often proves insufficient for solving domain-specific tasks. Systematically analyzing their failures and effectively enhancing their performance remain significant challenges. This paper introduces the Re-TASK framework, a novel theoretical model that Revisits LLM Tasks from cApability, Skill, Knowledge perspectives, guided by the principles of Bloom's Taxonomy and Knowledge Space Theory. The Re-TASK framework provides a systematic methodology to deepen our understanding, evaluation, and enhancement of LLMs for domain-specific tasks. It explores the interplay among an LLM's capabilities, the knowledge it processes, and the skills it applies, elucidating how these elements are interconnected and impact task performance. Our application of the Re-TASK framework reveals that many failures in domain-specific tasks can be attributed to insufficient knowledge or inadequate skill adaptation. With this insight, we propose structured strategies for enhancing LLMs through targeted knowledge injection and skill adaptation. Specifically, we identify key capability items associated with tasks and employ a deliberately designed prompting strategy to enhance task performance, thereby reducing the need for extensive fine-tuning. Alternatively, we fine-tune the LLM using capability-specific instructions, further validating the efficacy of our framework. Experimental results confirm the framework's effectiveness, demonstrating substantial improvements in both the performance and applicability of LLMs.
Abstract:Encoding constraints into neural networks is attractive. This paper studies how to introduce the popular positive linear satisfiability to neural networks. We propose the first differentiable satisfiability layer based on an extension of the classic Sinkhorn algorithm for jointly encoding multiple sets of marginal distributions. We further theoretically characterize the convergence property of the Sinkhorn algorithm for multiple marginals. In contrast to the sequential decision e.g.\ reinforcement learning-based solvers, we showcase our technique in solving constrained (specifically satisfiability) problems by one-shot neural networks, including i) a neural routing solver learned without supervision of optimal solutions; ii) a partial graph matching network handling graphs with unmatchable outliers on both sides; iii) a predictive network for financial portfolios with continuous constraints. To our knowledge, there exists no one-shot neural solver for these scenarios when they are formulated as satisfiability problems. Source code is available at https://github.com/Thinklab-SJTU/LinSATNet
Abstract:Mixup has shown considerable success in mitigating the challenges posed by limited labeled data in image classification. By synthesizing samples through the interpolation of features and labels, Mixup effectively addresses the issue of data scarcity. However, it has rarely been explored in graph learning tasks due to the irregularity and connectivity of graph data. Specifically, in node classification tasks, Mixup presents a challenge in creating connections for synthetic data. In this paper, we propose Geometric Mixup (GeoMix), a simple and interpretable Mixup approach leveraging in-place graph editing. It effectively utilizes geometry information to interpolate features and labels with those from the nearby neighborhood, generating synthetic nodes and establishing connections for them. We conduct theoretical analysis to elucidate the rationale behind employing geometry information for node Mixup, emphasizing the significance of locality enhancement-a critical aspect of our method's design. Extensive experiments demonstrate that our lightweight Geometric Mixup achieves state-of-the-art results on a wide variety of standard datasets with limited labeled data. Furthermore, it significantly improves the generalization capability of underlying GNNs across various challenging out-of-distribution generalization tasks. Our code is available at https://github.com/WtaoZhao/geomix.
Abstract:Learning a world model for model-free Reinforcement Learning (RL) agents can significantly improve the sample efficiency by learning policies in imagination. However, building a world model for Multi-Agent RL (MARL) can be particularly challenging due to the scalability issue in a centralized architecture arising from a large number of agents, and also the non-stationarity issue in a decentralized architecture stemming from the inter-dependency among agents. To address both challenges, we propose a novel world model for MARL that learns decentralized local dynamics for scalability, combined with a centralized representation aggregation from all agents. We cast the dynamics learning as an auto-regressive sequence modeling problem over discrete tokens by leveraging the expressive Transformer architecture, in order to model complex local dynamics across different agents and provide accurate and consistent long-term imaginations. As the first pioneering Transformer-based world model for multi-agent systems, we introduce a Perceiver Transformer as an effective solution to enable centralized representation aggregation within this context. Results on Starcraft Multi-Agent Challenge (SMAC) show that it outperforms strong model-free approaches and existing model-based methods in both sample efficiency and overall performance.
Abstract:Scientific documents record research findings and valuable human knowledge, comprising a vast corpus of high-quality data. Leveraging multi-modality data extracted from these documents and assessing large models' abilities to handle scientific document-oriented tasks is therefore meaningful. Despite promising advancements, large models still perform poorly on multi-page scientific document extraction and understanding tasks, and their capacity to process within-document data formats such as charts and equations remains under-explored. To address these issues, we present DocGenome, a structured document benchmark constructed by annotating 500K scientific documents from 153 disciplines in the arXiv open-access community, using our custom auto-labeling pipeline. DocGenome features four key characteristics: 1) Completeness: It is the first dataset to structure data from all modalities including 13 layout attributes along with their LaTeX source codes. 2) Logicality: It provides 6 logical relationships between different entities within each scientific document. 3) Diversity: It covers various document-oriented tasks, including document classification, visual grounding, document layout detection, document transformation, open-ended single-page QA and multi-page QA. 4) Correctness: It undergoes rigorous quality control checks conducted by a specialized team. We conduct extensive experiments to demonstrate the advantages of DocGenome and objectively evaluate the performance of large models on our benchmark.
Abstract:Scene graph generation (SGG) in satellite imagery (SAI) benefits promoting intelligent understanding of geospatial scenarios from perception to cognition. In SAI, objects exhibit great variations in scales and aspect ratios, and there exist rich relationships between objects (even between spatially disjoint objects), which makes it necessary to holistically conduct SGG in large-size very-high-resolution (VHR) SAI. However, the lack of SGG datasets with large-size VHR SAI has constrained the advancement of SGG in SAI. Due to the complexity of large-size VHR SAI, mining triplets <subject, relationship, object> in large-size VHR SAI heavily relies on long-range contextual reasoning. Consequently, SGG models designed for small-size natural imagery are not directly applicable to large-size VHR SAI. To address the scarcity of datasets, this paper constructs a large-scale dataset for SGG in large-size VHR SAI with image sizes ranging from 512 x 768 to 27,860 x 31,096 pixels, named RSG, encompassing over 210,000 objects and more than 400,000 triplets. To realize SGG in large-size VHR SAI, we propose a context-aware cascade cognition (CAC) framework to understand SAI at three levels: object detection (OBD), pair pruning and relationship prediction. As a fundamental prerequisite for SGG in large-size SAI, a holistic multi-class object detection network (HOD-Net) that can flexibly integrate multi-scale contexts is proposed. With the consideration that there exist a huge amount of object pairs in large-size SAI but only a minority of object pairs contain meaningful relationships, we design a pair proposal generation (PPG) network via adversarial reconstruction to select high-value pairs. Furthermore, a relationship prediction network with context-aware messaging (RPCM) is proposed to predict the relationship types of these pairs.
Abstract:Vision-Language Foundation Models (VLFMs) have made remarkable progress on various multimodal tasks, such as image captioning, image-text retrieval, visual question answering, and visual grounding. However, most methods rely on training with general image datasets, and the lack of geospatial data leads to poor performance on earth observation. Numerous geospatial image-text pair datasets and VLFMs fine-tuned on them have been proposed recently. These new approaches aim to leverage large-scale, multimodal geospatial data to build versatile intelligent models with diverse geo-perceptive capabilities, which we refer to as Vision-Language Geo-Foundation Models (VLGFMs). This paper thoroughly reviews VLGFMs, summarizing and analyzing recent developments in the field. In particular, we introduce the background and motivation behind the rise of VLGFMs, highlighting their unique research significance. Then, we systematically summarize the core technologies employed in VLGFMs, including data construction, model architectures, and applications of various multimodal geospatial tasks. Finally, we conclude with insights, issues, and discussions regarding future research directions. To the best of our knowledge, this is the first comprehensive literature review of VLGFMs. We keep tracing related works at https://github.com/zytx121/Awesome-VLGFM.
Abstract:Real-world data generation often involves certain geometries (e.g., graphs) that induce instance-level interdependence. This characteristic makes the generalization of learning models more difficult due to the intricate interdependent patterns that impact data-generative distributions and can vary from training to testing. In this work, we propose a geometric diffusion model with learnable divergence fields for the challenging generalization problem with interdependent data. We generalize the diffusion equation with stochastic diffusivity at each time step, which aims to capture the multi-faceted information flows among interdependent data. Furthermore, we derive a new learning objective through causal inference, which can guide the model to learn generalizable patterns of interdependence that are insensitive across domains. Regarding practical implementation, we introduce three model instantiations that can be considered as the generalized versions of GCN, GAT, and Transformers, respectively, which possess advanced robustness against distribution shifts. We demonstrate their promising efficacy for out-of-distribution generalization on diverse real-world datasets.
Abstract:In an era marked by the rapid scaling of foundation models, autonomous driving technologies are approaching a transformative threshold where end-to-end autonomous driving (E2E-AD) emerges due to its potential of scaling up in the data-driven manner. However, existing E2E-AD methods are mostly evaluated under the open-loop log-replay manner with L2 errors and collision rate as metrics (e.g., in nuScenes), which could not fully reflect the driving performance of algorithms as recently acknowledged in the community. For those E2E-AD methods evaluated under the closed-loop protocol, they are tested in fixed routes (e.g., Town05Long and Longest6 in CARLA) with the driving score as metrics, which is known for high variance due to the unsmoothed metric function and large randomness in the long route. Besides, these methods usually collect their own data for training, which makes algorithm-level fair comparison infeasible. To fulfill the paramount need of comprehensive, realistic, and fair testing environments for Full Self-Driving (FSD), we present Bench2Drive, the first benchmark for evaluating E2E-AD systems' multiple abilities in a closed-loop manner. Bench2Drive's official training data consists of 2 million fully annotated frames, collected from 10000 short clips uniformly distributed under 44 interactive scenarios (cut-in, overtaking, detour, etc), 23 weathers (sunny, foggy, rainy, etc), and 12 towns (urban, village, university, etc) in CARLA v2. Its evaluation protocol requires E2E-AD models to pass 44 interactive scenarios under different locations and weathers which sums up to 220 routes and thus provides a comprehensive and disentangled assessment about their driving capability under different situations. We implement state-of-the-art E2E-AD models and evaluate them in Bench2Drive, providing insights regarding current status and future directions.
Abstract:Recent developments in large-scale pre-trained text-to-image diffusion models have significantly improved the generation of high-fidelity images, particularly with the emergence of diffusion models based on transformer architecture (DiTs). Among these diffusion models, diffusion transformers have demonstrated superior image generation capabilities, boosting lower FID scores and higher scalability. However, deploying large-scale DiT models can be expensive due to their extensive parameter numbers. Although existing research has explored efficient deployment techniques for diffusion models such as model quantization, there is still little work concerning DiT-based models. To tackle this research gap, in this paper, we propose TerDiT, a quantization-aware training (QAT) and efficient deployment scheme for ternary diffusion models with transformers. We focus on the ternarization of DiT networks and scale model sizes from 600M to 4.2B. Our work contributes to the exploration of efficient deployment strategies for large-scale DiT models, demonstrating the feasibility of training extremely low-bit diffusion transformer models from scratch while maintaining competitive image generation capacities compared to full-precision models. Code will be available at https://github.com/Lucky-Lance/TerDiT.