Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!

Qitian Wu, Fan Nie, Chenxiao Yang, Tianyi Bao, Junchi Yan

Out-of-distribution (OOD) generalization has gained increasing attentions for learning on graphs, as graph neural networks (GNNs) often exhibit performance degradation with distribution shifts. The challenge is that distribution shifts on graphs involve intricate interconnections between nodes, and the environment labels are often absent in data. In this paper, we adopt a bottom-up data-generative perspective and reveal a key observation through causal analysis: the crux of GNNs' failure in OOD generalization lies in the latent confounding bias from the environment. The latter misguides the model to leverage environment-sensitive correlations between ego-graph features and target nodes' labels, resulting in undesirable generalization on new unseen nodes. Built upon this analysis, we introduce a conceptually simple yet principled approach for training robust GNNs under node-level distribution shifts, without prior knowledge of environment labels. Our method resorts to a new learning objective derived from causal inference that coordinates an environment estimator and a mixture-of-expert GNN predictor. The new approach can counteract the confounding bias in training data and facilitate learning generalizable predictive relations. Extensive experiment demonstrates that our model can effectively enhance generalization with various types of distribution shifts and yield up to 27.4\% accuracy improvement over state-of-the-arts on graph OOD generalization benchmarks. Source codes are available at https://github.com/fannie1208/CaNet.

Via

Yang Fan, Xiangping Wu, Qingcai Chen, Heng Li, Yan Huang, Zhixiang Cai, Qitian Wu

The diversity of tables makes table detection a great challenge, leading to existing models becoming more tedious and complex. Despite achieving high performance, they often overfit to the table style in training set, and suffer from significant performance degradation when encountering out-of-distribution tables in other domains. To tackle this problem, we start from the essence of the table, which is a set of text arranged in rows and columns. Based on this, we propose a novel, light-weighted and robust Table Detection method based on Learning Text Arrangement, namely TDeLTA. TDeLTA takes the text blocks as input, and then models the arrangement of them with a sequential encoder and an attention module. To locate the tables precisely, we design a text-classification task, classifying the text blocks into 4 categories according to their semantic roles in the tables. Experiments are conducted on both the text blocks parsed from PDF and extracted by open-source OCR tools, respectively. Compared to several state-of-the-art methods, TDeLTA achieves competitive results with only 3.1M model parameters on the large-scale public datasets. Moreover, when faced with the cross-domain data under the 0-shot setting, TDeLTA outperforms baselines by a large margin of nearly 7%, which shows the strong robustness and transferability of the proposed model.

Via

Wujiang Xu, Qitian Wu, Runzhong Wang, Mingming Ha, Qiongxu Ma, Linxun Chen, Bing Han, Junchi Yan

Cross-Domain Sequential Recommendation (CDSR) methods aim to tackle the data sparsity and cold-start problems present in Single-Domain Sequential Recommendation (SDSR). Existing CDSR works design their elaborate structures relying on overlapping users to propagate the cross-domain information. However, current CDSR methods make closed-world assumptions, assuming fully overlapping users across multiple domains and that the data distribution remains unchanged from the training environment to the test environment. As a result, these methods typically result in lower performance on online real-world platforms due to the data distribution shifts. To address these challenges under open-world assumptions, we design an \textbf{A}daptive \textbf{M}ulti-\textbf{I}nterest \textbf{D}ebiasing framework for cross-domain sequential recommendation (\textbf{AMID}), which consists of a multi-interest information module (\textbf{MIM}) and a doubly robust estimator (\textbf{DRE}). Our framework is adaptive for open-world environments and can improve the model of most off-the-shelf single-domain sequential backbone models for CDSR. Our MIM establishes interest groups that consider both overlapping and non-overlapping users, allowing us to effectively explore user intent and explicit interest. To alleviate biases across multiple domains, we developed the DRE for the CDSR methods. We also provide a theoretical analysis that demonstrates the superiority of our proposed estimator in terms of bias and tail bound, compared to the IPS estimator used in previous work.

Via

Qitian Wu, Chenxiao Yang, Kaipeng Zeng, Fan Nie, Michael Bronstein, Junchi Yan

Graph diffusion equations are intimately related to graph neural networks (GNNs) and have recently attracted attention as a principled framework for analyzing GNN dynamics, formalizing their expressive power, and justifying architectural choices. One key open questions in graph learning is the generalization capabilities of GNNs. A major limitation of current approaches hinges on the assumption that the graph topologies in the training and test sets come from the same distribution. In this paper, we make steps towards understanding the generalization of GNNs by exploring how graph diffusion equations extrapolate and generalize in the presence of varying graph topologies. We first show deficiencies in the generalization capability of existing models built upon local diffusion on graphs, stemming from the exponential sensitivity to topology variation. Our subsequent analysis reveals the promise of non-local diffusion, which advocates for feature propagation over fully-connected latent graphs, under the assumption of a specific data-generating condition. In addition to these findings, we propose a novel graph encoder backbone, Advective Diffusion Transformer (ADiT), inspired by advective graph diffusion equations that have a closed-form solution backed up with theoretical guarantees of desired generalization under topological distribution shifts. The new model, functioning as a versatile graph Transformer, demonstrates superior performance across a wide range of graph learning tasks.

Via

Chenxiao Yang, Qitian Wu, David Wipf, Ruoyu Sun, Junchi Yan

A long-standing goal in deep learning has been to characterize the learning behavior of black-box models in a more interpretable manner. For graph neural networks (GNNs), considerable advances have been made in formalizing what functions they can represent, however it remains less clear whether and how GNNs learn desired functions during the optimization process. To fill this critical gap, we study the learning dynamics of GNNs in function space via the analytic framework of overparameterization. In particular, we find that the seemingly complicated training process of GNNs can be re-cast into a more familiar label propagation framework, due to the graph inductive bias implicit in this process. From this vantage point, we provide explanations for why the learned GNN functions successfully generalize and for their pathological behavior on heterophilic graphs, which are consistent with observations. Practically, sparsifying and implementing the learning dynamics lead to a minimalist semi-supervised learning algorithm with the efficiency of classic algorithms and the effectiveness of modern GNNs.

Via

Wentao Zhao, Qitian Wu, Chenxiao Yang, Junchi Yan

Graph structure learning is a well-established problem that aims at optimizing graph structures adaptive to specific graph datasets to help message passing neural networks (i.e., GNNs) to yield effective and robust node embeddings. However, the common limitation of existing models lies in the underlying \textit{closed-world assumption}: the testing graph is the same as the training graph. This premise requires independently training the structure learning model from scratch for each graph dataset, which leads to prohibitive computation costs and potential risks for serious over-fitting. To mitigate these issues, this paper explores a new direction that moves forward to learn a universal structure learning model that can generalize across graph datasets in an open world. We first introduce the mathematical definition of this novel problem setting, and describe the model formulation from a probabilistic data-generative aspect. Then we devise a general framework that coordinates a single graph-shared structure learner and multiple graph-specific GNNs to capture the generalizable patterns of optimal message-passing topology across datasets. The well-trained structure learner can directly produce adaptive structures for unseen target graphs without any fine-tuning. Across diverse datasets and various challenging cross-graph generalization protocols, our experiments show that even without training on target graphs, the proposed model i) significantly outperforms expressive GNNs trained on input (non-optimized) topology, and ii) surprisingly performs on par with state-of-the-art models that independently optimize adaptive structures for specific target graphs, with notably orders-of-magnitude acceleration for training on the target graph.

Via

Qitian Wu, Wentao Zhao, Chenxiao Yang, Hengrui Zhang, Fan Nie, Haitian Jiang, Yatao Bian, Junchi Yan

Learning representations on large-sized graphs is a long-standing challenge due to the inter-dependence nature involved in massive data points. Transformers, as an emerging class of foundation encoders for graph-structured data, have shown promising performance on small graphs due to its global attention capable of capturing all-pair influence beyond neighboring nodes. Even so, existing approaches tend to inherit the spirit of Transformers in language and vision tasks, and embrace complicated models by stacking deep multi-head attentions. In this paper, we critically demonstrate that even using a one-layer attention can bring up surprisingly competitive performance across node property prediction benchmarks where node numbers range from thousand-level to billion-level. This encourages us to rethink the design philosophy for Transformers on large graphs, where the global attention is a computation overhead hindering the scalability. We frame the proposed scheme as Simplified Graph Transformers (SGFormer), which is empowered by a simple attention model that can efficiently propagate information among arbitrary nodes in one layer. SGFormer requires none of positional encodings, feature/graph pre-processing or augmented loss. Empirically, SGFormer successfully scales to the web-scale graph ogbn-papers100M and yields up to 141x inference acceleration over SOTA Transformers on medium-sized graphs. Beyond current results, we believe the proposed methodology alone enlightens a new technical path of independent interest for building Transformers on large graphs.

Via

Qitian Wu, Wentao Zhao, Zenan Li, David Wipf, Junchi Yan

Graph neural networks have been extensively studied for learning with inter-connected data. Despite this, recent evidence has revealed GNNs' deficiencies related to over-squashing, heterophily, handling long-range dependencies, edge incompleteness and particularly, the absence of graphs altogether. While a plausible solution is to learn new adaptive topology for message passing, issues concerning quadratic complexity hinder simultaneous guarantees for scalability and precision in large networks. In this paper, we introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes, as an important building block for a pioneering Transformer-style network for node classification on large graphs, dubbed as \textsc{NodeFormer}. Specifically, the efficient computation is enabled by a kernerlized Gumbel-Softmax operator that reduces the algorithmic complexity to linearity w.r.t. node numbers for learning latent graph structures from large, potentially fully-connected graphs in a differentiable manner. We also provide accompanying theory as justification for our design. Extensive experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs (with up to 2M nodes) and graph-enhanced applications (e.g., image classification) where input graphs are missing.

Via

Qitian Wu, Yiting Chen, Chenxiao Yang, Junchi Yan

Learning on graphs, where instance nodes are inter-connected, has become one of the central problems for deep learning, as relational structures are pervasive and induce data inter-dependence which hinders trivial adaptation of existing approaches that assume inputs to be i.i.d.~sampled. However, current models mostly focus on improving testing performance of in-distribution data and largely ignore the potential risk w.r.t. out-of-distribution (OOD) testing samples that may cause negative outcome if the prediction is overconfident on them. In this paper, we investigate the under-explored problem, OOD detection on graph-structured data, and identify a provably effective OOD discriminator based on an energy function directly extracted from graph neural networks trained with standard classification loss. This paves a way for a simple, powerful and efficient OOD detection model for GNN-based learning on graphs, which we call GNNSafe. It also has nice theoretical properties that guarantee an overall distinguishable margin between the detection scores for in-distribution and OOD samples, which, more critically, can be further strengthened by a learning-free energy belief propagation scheme. For comprehensive evaluation, we introduce new benchmark settings that evaluate the model for detecting OOD data from both synthetic and real distribution shifts (cross-domain graph shifts and temporal graph shifts). The results show that GNNSafe achieves up to $17.0\%$ AUROC improvement over state-of-the-arts and it could serve as simple yet strong baselines in such an under-developed area.

Via

Qitian Wu, Chenxiao Yang, Wentao Zhao, Yixuan He, David Wipf, Junchi Yan

Real-world data generation often involves complex inter-dependencies among instances, violating the IID-data hypothesis of standard learning paradigms and posing a challenge for uncovering the geometric structures for learning desired instance representations. To this end, we introduce an energy constrained diffusion model which encodes a batch of instances from a dataset into evolutionary states that progressively incorporate other instances' information by their interactions. The diffusion process is constrained by descent criteria w.r.t.~a principled energy function that characterizes the global consistency of instance representations over latent structures. We provide rigorous theory that implies closed-form optimal estimates for the pairwise diffusion strength among arbitrary instance pairs, which gives rise to a new class of neural encoders, dubbed as DIFFormer (diffusion-based Transformers), with two instantiations: a simple version with linear complexity for prohibitive instance numbers, and an advanced version for learning complex structures. Experiments highlight the wide applicability of our model as a general-purpose encoder backbone with superior performance in various tasks, such as node classification on large graphs, semi-supervised image/text classification, and spatial-temporal dynamics prediction.

Via