University of Massachusetts Amherst
Abstract:Multimodal large language models~(MLLMs) have demonstrated promising spatial understanding capabilities, such as referencing and grounding object descriptions. Despite their successes, MLLMs still fall short in fine-grained spatial perception abilities, such as generating detailed region descriptions or accurately localizing objects. Additionally, they often fail to respond to the user's requirements for desired fine-grained spatial understanding. This issue might arise because existing approaches primarily focus on tuning MLLMs to model pre-annotated instruction data to inject spatial knowledge, without direct supervision of MLLMs' actual responses. We address this issue by SPR, a Spatial Preference Rewarding~(SPR) approach that enhances MLLMs' spatial capabilities by rewarding MLLMs' detailed responses with precise object localization over vague or inaccurate responses. With randomly selected image regions and region descriptions from MLLMs, SPR introduces semantic and localization scores to comprehensively evaluate the text quality and localization quality in MLLM-generated descriptions. We also refine the MLLM descriptions with better localization accuracy and pair the best-scored refinement with the initial descriptions of the lowest score for direct preference optimization, thereby enhancing fine-grained alignment with visual input. Extensive experiments over standard referring and grounding benchmarks show that SPR improves MLLM spatial understanding capabilities effectively with minimal overhead in training. Data and code will be released at https://github.com/hanqiu-hq/SPR




Abstract:Aligning large-scale vision-language models (VLMs) for complex reasoning via reinforcement learning is often hampered by the limitations of existing policy optimization algorithms, such as static training schedules and the rigid, uniform clipping mechanism in Proximal Policy Optimization (PPO). In this work, we introduce Adaptive Curriculum Policy Optimization (ACPO), a novel framework that addresses these challenges through a dual-component adaptive learning strategy. First, ACPO employs a dynamic curriculum that orchestrates a principled transition from a stable, near on-policy exploration phase to an efficient, off-policy exploitation phase by progressively increasing sample reuse. Second, we propose an Advantage-Aware Adaptive Clipping (AAAC) mechanism that replaces the fixed clipping hyperparameter with dynamic, sample-wise bounds modulated by the normalized advantage of each token. This allows for more granular and robust policy updates, enabling larger gradients for high-potential samples while safeguarding against destructive ones. We conduct extensive experiments on a suite of challenging multimodal reasoning benchmarks, including MathVista, LogicVista, and MMMU-Pro. Results demonstrate that ACPO consistently outperforms strong baselines such as DAPO and PAPO, achieving state-of-the-art performance, accelerated convergence, and superior training stability.
Abstract:We present Lumina-mGPT 2.0, a stand-alone, decoder-only autoregressive model that revisits and revitalizes the autoregressive paradigm for high-quality image generation and beyond. Unlike existing approaches that rely on pretrained components or hybrid architectures, Lumina-mGPT 2.0 is trained entirely from scratch, enabling unrestricted architectural design and licensing freedom. It achieves generation quality on par with state-of-the-art diffusion models such as DALL-E 3 and SANA, while preserving the inherent flexibility and compositionality of autoregressive modeling. Our unified tokenization scheme allows the model to seamlessly handle a wide spectrum of tasks-including subject-driven generation, image editing, controllable synthesis, and dense prediction-within a single generative framework. To further boost usability, we incorporate efficient decoding strategies like inference-time scaling and speculative Jacobi sampling to improve quality and speed, respectively. Extensive evaluations on standard text-to-image benchmarks (e.g., GenEval, DPG) demonstrate that Lumina-mGPT 2.0 not only matches but in some cases surpasses diffusion-based models. Moreover, we confirm its multi-task capabilities on the Graph200K benchmark, with the native Lumina-mGPT 2.0 performing exceptionally well. These results position Lumina-mGPT 2.0 as a strong, flexible foundation model for unified multimodal generation. We have released our training details, code, and models at https://github.com/Alpha-VLLM/Lumina-mGPT-2.0.
Abstract:AutoRegressive (AR) models have made notable progress in image generation, with Masked AutoRegressive (MAR) models gaining attention for their efficient parallel decoding. However, MAR models have traditionally underperformed when compared to standard AR models. This study refines the MAR architecture to improve image generation quality. We begin by evaluating various image tokenizers to identify the most effective one. Subsequently, we introduce an improved Bidirectional LLaMA architecture by replacing causal attention with bidirectional attention and incorporating 2D RoPE, which together form our advanced model, MaskGIL. Scaled from 111M to 1.4B parameters, MaskGIL achieves a FID score of 3.71, matching state-of-the-art AR models in the ImageNet 256x256 benchmark, while requiring only 8 inference steps compared to the 256 steps of AR models. Furthermore, we develop a text-driven MaskGIL model with 775M parameters for generating images from text at various resolutions. Beyond image generation, MaskGIL extends to accelerate AR-based generation and enable real-time speech-to-image conversion. Our codes and models are available at https://github.com/synbol/MaskGIL.
Abstract:Egocentric pose estimation is a fundamental capability for multi-robot collaborative perception in connected autonomy, such as connected autonomous vehicles. During multi-robot operations, a robot needs to know the relative pose between itself and its teammates with respect to its own coordinates. However, different robots usually observe completely different views that contains similar objects, which leads to wrong pose estimation. In addition, it is unrealistic to allow robots to share their raw observations to detect overlap due to the limited communication bandwidth constraint. In this paper, we introduce a novel method for Non-Overlap-Aware Egocentric Pose Estimation (NOPE), which performs egocentric pose estimation in a multi-robot team while identifying the non-overlap views and satifying the communication bandwidth constraint. NOPE is built upon an unified hierarchical learning framework that integrates two levels of robot learning: (1) high-level deep graph matching for correspondence identification, which allows to identify if two views are overlapping or not, (2) low-level position-aware cross-attention graph learning for egocentric pose estimation. To evaluate NOPE, we conduct extensive experiments in both high-fidelity simulation and real-world scenarios. Experimental results have demonstrated that NOPE enables the novel capability for non-overlapping-aware egocentric pose estimation and achieves state-of-art performance compared with the existing methods. Our project page at https://hongh0.github.io/NOPE/.
Abstract:We introduce MiniMax-M1, the world's first open-weight, large-scale hybrid-attention reasoning model. MiniMax-M1 is powered by a hybrid Mixture-of-Experts (MoE) architecture combined with a lightning attention mechanism. The model is developed based on our previous MiniMax-Text-01 model, which contains a total of 456 billion parameters with 45.9 billion parameters activated per token. The M1 model natively supports a context length of 1 million tokens, 8x the context size of DeepSeek R1. Furthermore, the lightning attention mechanism in MiniMax-M1 enables efficient scaling of test-time compute. These properties make M1 particularly suitable for complex tasks that require processing long inputs and thinking extensively. MiniMax-M1 is trained using large-scale reinforcement learning (RL) on diverse problems including sandbox-based, real-world software engineering environments. In addition to M1's inherent efficiency advantage for RL training, we propose CISPO, a novel RL algorithm to further enhance RL efficiency. CISPO clips importance sampling weights rather than token updates, outperforming other competitive RL variants. Combining hybrid-attention and CISPO enables MiniMax-M1's full RL training on 512 H800 GPUs to complete in only three weeks, with a rental cost of just $534,700. We release two versions of MiniMax-M1 models with 40K and 80K thinking budgets respectively, where the 40K model represents an intermediate phase of the 80K training. Experiments on standard benchmarks show that our models are comparable or superior to strong open-weight models such as the original DeepSeek-R1 and Qwen3-235B, with particular strengths in complex software engineering, tool utilization, and long-context tasks. We publicly release MiniMax-M1 at https://github.com/MiniMax-AI/MiniMax-M1.
Abstract:The tokenization of speech with neural speech codec models is a crucial aspect of AI systems designed for speech understanding and generation. While text-based systems naturally benefit from token boundaries between discrete symbols, tokenizing continuous speech signals is more complex due to the unpredictable timing of important acoustic variations. Most current neural speech codecs typically address this by using uniform processing at fixed time intervals, which overlooks the varying information density inherent in speech. In this paper, we introduce a distinctive feature-based approach that dynamically allocates tokens based on the perceptual significance of speech content. By learning to identify and prioritize distinctive regions in speech signals, our approach achieves a significantly more efficient speech representation compared with conventional frame-based methods. This work marks the first successful extension of traditional signal processing-based distinctive features into deep learning frameworks. Through rigorous experimentation, we demonstrate the effectiveness of our approach and provide theoretical insights into how aligning segment boundaries with natural acoustic transitions improves codebook utilization. Additionally, we enhance tokenization stability by developing a Group-wise Scalar Quantization approach for variable-length segments. Our distinctive feature-based approach offers a promising alternative to conventional frame-based processing and advances interpretable representation learning in the modern deep learning speech processing framework.
Abstract:Learning general-purpose reasoning capabilities has long been a challenging problem in AI. Recent research in large language models (LLMs), such as DeepSeek-R1, has shown that reinforcement learning techniques like GRPO can enable pre-trained LLMs to develop reasoning capabilities using simple question-answer pairs. In this paper, we aim to train visual language models (VLMs) to perform reasoning on image data through reinforcement learning and visual question-answer pairs, without any explicit chain-of-thought (CoT) supervision. Our findings indicate that simply applying reinforcement learning to a VLM -- by prompting the model to produce a reasoning chain before providing an answer -- can lead the model to develop shortcuts from easy questions, thereby reducing its ability to generalize across unseen data distributions. We argue that the key to mitigating shortcut learning is to encourage the model to interpret images prior to reasoning. Therefore, we train the model to adhere to a caption-reason-answer output format: initially generating a detailed caption for an image, followed by constructing an extensive reasoning chain. When trained on 273K CoT-free visual question-answer pairs and using only reinforcement learning, our model, named Visionary-R1, outperforms strong multimodal models, such as GPT-4o, Claude3.5-Sonnet, and Gemini-1.5-Pro, on multiple visual reasoning benchmarks.
Abstract:In recent years, visual tracking methods based on convolutional neural networks and Transformers have achieved remarkable performance and have been successfully applied in fields such as autonomous driving. However, the numerous security issues exposed by deep learning models have gradually affected the reliable application of visual tracking methods in real-world scenarios. Therefore, how to reveal the security vulnerabilities of existing visual trackers through effective adversarial attacks has become a critical problem that needs to be addressed. To this end, we propose an adaptive meta-gradient adversarial attack (AMGA) method for visual tracking. This method integrates multi-model ensembles and meta-learning strategies, combining momentum mechanisms and Gaussian smoothing, which can significantly enhance the transferability and attack effectiveness of adversarial examples. AMGA randomly selects models from a large model repository, constructs diverse tracking scenarios, and iteratively performs both white- and black-box adversarial attacks in each scenario, optimizing the gradient directions of each model. This paradigm minimizes the gap between white- and black-box adversarial attacks, thus achieving excellent attack performance in black-box scenarios. Extensive experimental results on large-scale datasets such as OTB2015, LaSOT, and GOT-10k demonstrate that AMGA significantly improves the attack performance, transferability, and deception of adversarial examples. Codes and data are available at https://github.com/pgao-lab/AMGA.




Abstract:Visual Document Understanding has become essential with the increase of text-rich visual content. This field poses significant challenges due to the need for effective integration of visual perception and textual comprehension, particularly across diverse document types with complex layouts. Moreover, existing fine-tuning datasets for this domain often fall short in providing the detailed contextual information for robust understanding, leading to hallucinations and limited comprehension of spatial relationships among visual elements. To address these challenges, we propose an innovative pipeline that utilizes adaptive generation of markup languages, such as Markdown, JSON, HTML, and TiKZ, to build highly structured document representations and deliver contextually-grounded responses. We introduce two fine-grained structured datasets: DocMark-Pile, comprising approximately 3.8M pretraining data pairs for document parsing, and DocMark-Instruct, featuring 624k fine-tuning data annotations for grounded instruction following. Extensive experiments demonstrate that our proposed model significantly outperforms existing state-of-theart MLLMs across a range of visual document understanding benchmarks, facilitating advanced reasoning and comprehension capabilities in complex visual scenarios. Our code and models are released at https://github. com/Euphoria16/DocMark.