Shawn
Abstract:In recent years, non-intrusive load monitoring (NILM) technology has attracted much attention in the related research field by virtue of its unique advantage of utilizing single meter data to achieve accurate decomposition of device-level energy consumption. Cutting-edge methods based on machine learning and deep learning have achieved remarkable results in load decomposition accuracy by fusing time-frequency domain features. However, these methods generally suffer from high computational costs and huge memory requirements, which become the main obstacles for their deployment on resource-constrained microcontroller units (MCUs). To address these challenges, this study proposes an innovative Dynamic Time Warping (DTW) algorithm in the time-frequency domain and systematically compares and analyzes the performance of six machine learning techniques in home electricity scenarios. Through complete experimental validation on edge MCUs, this scheme successfully achieves a recognition accuracy of 95%. Meanwhile, this study deeply optimizes the frequency domain feature extraction process, which effectively reduces the running time by 55.55% and the storage overhead by about 34.6%. The algorithm performance will be further optimized in future research work. Considering that the elimination of voltage transformer design can significantly reduce the cost, the subsequent research will focus on this direction, and is committed to providing more cost-effective solutions for the practical application of NILM, and providing a solid theoretical foundation and feasible technical paths for the design of efficient NILM systems in edge computing environments.
Abstract:This paper reviews the NTIRE 2025 Challenge on Day and Night Raindrop Removal for Dual-Focused Images. This challenge received a wide range of impressive solutions, which are developed and evaluated using our collected real-world Raindrop Clarity dataset. Unlike existing deraining datasets, our Raindrop Clarity dataset is more diverse and challenging in degradation types and contents, which includes day raindrop-focused, day background-focused, night raindrop-focused, and night background-focused degradations. This dataset is divided into three subsets for competition: 14,139 images for training, 240 images for validation, and 731 images for testing. The primary objective of this challenge is to establish a new and powerful benchmark for the task of removing raindrops under varying lighting and focus conditions. There are a total of 361 participants in the competition, and 32 teams submitting valid solutions and fact sheets for the final testing phase. These submissions achieved state-of-the-art (SOTA) performance on the Raindrop Clarity dataset. The project can be found at https://lixinustc.github.io/CVPR-NTIRE2025-RainDrop-Competition.github.io/.
Abstract:Predicting the remaining useful life (RUL) of rotating machinery is critical for industrial safety and maintenance, but existing methods struggle with scarce target-domain data and unclear degradation dynamics. We propose a Meta-Learning and Knowledge Discovery-based Physics-Informed Neural Network (MKDPINN) to address these challenges. The method first maps noisy sensor data to a low-dimensional hidden state space via a Hidden State Mapper (HSM). A Physics-Guided Regulator (PGR) then learns unknown nonlinear PDEs governing degradation evolution, embedding these physical constraints into the PINN framework. This integrates data-driven and physics-based approaches. The framework uses meta-learning, optimizing across source-domain meta-tasks to enable few-shot adaptation to new target tasks. Experiments on industrial data and the C-MAPSS benchmark show MKDPINN outperforms baselines in generalization and accuracy, proving its effectiveness for RUL prediction under data scarcity
Abstract:Soft robots exhibit inherent compliance and safety, which makes them particularly suitable for applications requiring direct physical interaction with humans, such as surgical procedures. However, their nonlinear and hysteretic behavior, resulting from the properties of soft materials, presents substantial challenges for accurate modeling and control. In this study, we present a soft robotic system designed for surgical applications and propose a hysteresis-aware whole-body neural network model that accurately captures and predicts the soft robot's whole-body motion, including its hysteretic behavior. Building upon the high-precision dynamic model, we construct a highly parallel simulation environment for soft robot control and apply an on-policy reinforcement learning algorithm to efficiently train whole-body motion control strategies. Based on the trained control policy, we developed a soft robotic system for surgical applications and validated it through phantom-based laser ablation experiments in a physical environment. The results demonstrate that the hysteresis-aware modeling reduces the Mean Squared Error (MSE) by 84.95 percent compared to traditional modeling methods. The deployed control algorithm achieved a trajectory tracking error ranging from 0.126 to 0.250 mm on the real soft robot, highlighting its precision in real-world conditions. The proposed method showed strong performance in phantom-based surgical experiments and demonstrates its potential for complex scenarios, including future real-world clinical applications.
Abstract:Chain-of-Thought (CoT) prompting has emerged as a powerful technique to improve in-context learning (ICL) in large language models (LLMs) by breaking complex reasoning into intermediate steps. However, the ability of CoT to generalize under distribution shift remains poorly understood. In this work, we extend a latent-variable framework for CoT prompting and study its behavior on two prototypical out-of-distribution (OOD) scenarios: (i) the latent variables for CoT steps are permuted into novel combinations, and (ii) the latent variables uniformly scaled by a factor. Our experiments demonstrate that CoT inference generalizes effectively to OOD samples whose latent variables closely resemble those seen during training, but its performance degrades as this similarity decreases. These findings provide foundational insights into the strengths and limitations of CoT prompting under OOD conditions and suggest directions for developing more resilient reasoning strategies in future LLMs.
Abstract:Scaling test-time compute has emerged as a key ingredient for enabling large language models (LLMs) to solve difficult problems, but comes with high latency and inference cost. We introduce sleep-time compute, which allows models to "think" offline about contexts before queries are presented: by anticipating what queries users might ask and pre-computing useful quantities, we can significantly reduce the compute requirements at test-time. To demonstrate the efficacy of our method, we create modified versions of two reasoning tasks - Stateful GSM-Symbolic and Stateful AIME. We find that sleep-time compute can reduce the amount of test-time compute needed to achieve the same accuracy by ~ 5x on Stateful GSM-Symbolic and Stateful AIME and that by scaling sleep-time compute we can further increase accuracy by up to 13% on Stateful GSM-Symbolic and 18% on Stateful AIME. Furthermore, we introduce Multi-Query GSM-Symbolic, which extends GSM-Symbolic by including multiple related queries per context. By amortizing sleep-time compute across related queries about the same context using Multi-Query GSM-Symbolic, we can decrease the average cost per query by 2.5x. We then conduct additional analysis to understand when sleep-time compute is most effective, finding the predictability of the user query to be well correlated with the efficacy of sleep-time compute. Finally, we conduct a case-study of applying sleep-time compute to a realistic agentic SWE task.
Abstract:Diffusion Transformer(DiT)-based generation models have achieved remarkable success in video generation. However, their inherent computational demands pose significant efficiency challenges. In this paper, we exploit the inherent temporal non-uniformity of real-world videos and observe that videos exhibit dynamic information density, with high-motion segments demanding greater detail preservation than static scenes. Inspired by this temporal non-uniformity, we propose VGDFR, a training-free approach for Diffusion-based Video Generation with Dynamic Latent Frame Rate. VGDFR adaptively adjusts the number of elements in latent space based on the motion frequency of the latent space content, using fewer tokens for low-frequency segments while preserving detail in high-frequency segments. Specifically, our key contributions are: (1) A dynamic frame rate scheduler for DiT video generation that adaptively assigns frame rates for video segments. (2) A novel latent-space frame merging method to align latent representations with their denoised counterparts before merging those redundant in low-resolution space. (3) A preference analysis of Rotary Positional Embeddings (RoPE) across DiT layers, informing a tailored RoPE strategy optimized for semantic and local information capture. Experiments show that VGDFR can achieve a speedup up to 3x for video generation with minimal quality degradation.
Abstract:The rapid accumulation of Electronic Health Records (EHRs) has transformed healthcare by providing valuable data that enhance clinical predictions and diagnoses. While conventional machine learning models have proven effective, they often lack robust representation learning and depend heavily on expert-crafted features. Although deep learning offers powerful solutions, it is often criticized for its lack of interpretability. To address these challenges, we propose DeepSelective, a novel end to end deep learning framework for predicting patient prognosis using EHR data, with a strong emphasis on enhancing model interpretability. DeepSelective combines data compression techniques with an innovative feature selection approach, integrating custom-designed modules that work together to improve both accuracy and interpretability. Our experiments demonstrate that DeepSelective not only enhances predictive accuracy but also significantly improves interpretability, making it a valuable tool for clinical decision-making. The source code is freely available at http://www.healthinformaticslab.org/supp/resources.php .
Abstract:In typical multimodal tasks, such as Visual Question Answering (VQA), adversarial attacks targeting a specific image and question can lead large vision-language models (LVLMs) to provide incorrect answers. However, it is common for a single image to be associated with multiple questions, and LVLMs may still answer other questions correctly even for an adversarial image attacked by a specific question. To address this, we introduce the query-agnostic visual attack (QAVA), which aims to create robust adversarial examples that generate incorrect responses to unspecified and unknown questions. Compared to traditional adversarial attacks focused on specific images and questions, QAVA significantly enhances the effectiveness and efficiency of attacks on images when the question is unknown, achieving performance comparable to attacks on known target questions. Our research broadens the scope of visual adversarial attacks on LVLMs in practical settings, uncovering previously overlooked vulnerabilities, particularly in the context of visual adversarial threats. The code is available at https://github.com/btzyd/qava.
Abstract:Social simulation is transforming traditional social science research by modeling human behavior through interactions between virtual individuals and their environments. With recent advances in large language models (LLMs), this approach has shown growing potential in capturing individual differences and predicting group behaviors. However, existing methods face alignment challenges related to the environment, target users, interaction mechanisms, and behavioral patterns. To this end, we introduce SocioVerse, an LLM-agent-driven world model for social simulation. Our framework features four powerful alignment components and a user pool of 10 million real individuals. To validate its effectiveness, we conducted large-scale simulation experiments across three distinct domains: politics, news, and economics. Results demonstrate that SocioVerse can reflect large-scale population dynamics while ensuring diversity, credibility, and representativeness through standardized procedures and minimal manual adjustments.