Shawn
Abstract:Handling oversized, variable-shaped, or delicate objects in transportation, grasping tasks is extremely challenging, mainly due to the limitations of the gripper's shape and size. This paper proposes a novel gripper, Lasso Gripper. Inspired by traditional tools like the lasso and the uurga, Lasso Gripper captures objects by launching and retracting a string. Contrary to antipodal grippers, which concentrate force on a limited area, Lasso Gripper applies uniform pressure along the length of the string for a more gentle grasp. The gripper is controlled by four motors-two for launching the string inward and two for launching it outward. By adjusting motor speeds, the size of the string loop can be tuned to accommodate objects of varying sizes, eliminating the limitations imposed by the maximum gripper separation distance. To address the issue of string tangling during rapid retraction, a specialized mechanism was incorporated. Additionally, a dynamic model was developed to estimate the string's curve, providing a foundation for the kinematic analysis of the workspace. In grasping experiments, Lasso Gripper, mounted on a robotic arm, successfully captured and transported a range of objects, including bull and horse figures as well as delicate vegetables. The demonstration video is available here: https://youtu.be/PV1J76mNP9Y.
Abstract:Weakly supervised video anomaly detection (WS-VAD) is tasked with pinpointing temporal intervals containing anomalous events within untrimmed videos, utilizing only video-level annotations. However, a significant challenge arises due to the absence of dense frame-level annotations, often leading to incomplete localization in existing WS-VAD methods. To address this issue, we present a novel LEC-VAD, Learning Event Completeness for Weakly Supervised Video Anomaly Detection, which features a dual structure designed to encode both category-aware and category-agnostic semantics between vision and language. Within LEC-VAD, we devise semantic regularities that leverage an anomaly-aware Gaussian mixture to learn precise event boundaries, thereby yielding more complete event instances. Besides, we develop a novel memory bank-based prototype learning mechanism to enrich concise text descriptions associated with anomaly-event categories. This innovation bolsters the text's expressiveness, which is crucial for advancing WS-VAD. Our LEC-VAD demonstrates remarkable advancements over the current state-of-the-art methods on two benchmark datasets XD-Violence and UCF-Crime.
Abstract:Recent advances in Large Language Models (LLMs) have demonstrated new possibilities for accurate and efficient time series analysis, but prior work often required heavy fine-tuning and/or ignored inter-series correlations. In this work, we explore simple and flexible prompt-based strategies that enable LLMs to perform time series forecasting without extensive retraining or the use of a complex external architecture. Through the exploration of specialized prompting methods that leverage time series decomposition, patch-based tokenization, and similarity-based neighbor augmentation, we find that it is possible to enhance LLM forecasting quality while maintaining simplicity and requiring minimal preprocessing of data. To this end, we propose our own method, PatchInstruct, which enables LLMs to make precise and effective predictions.
Abstract:The integration of external knowledge through Retrieval-Augmented Generation (RAG) has become foundational in enhancing large language models (LLMs) for knowledge-intensive tasks. However, existing RAG paradigms often overlook the cognitive step of applying knowledge, leaving a gap between retrieved facts and task-specific reasoning. In this work, we introduce RAG+, a principled and modular extension that explicitly incorporates application-aware reasoning into the RAG pipeline. RAG+ constructs a dual corpus consisting of knowledge and aligned application examples, created either manually or automatically, and retrieves both jointly during inference. This design enables LLMs not only to access relevant information but also to apply it within structured, goal-oriented reasoning processes. Experiments across mathematical, legal, and medical domains, conducted on multiple models, demonstrate that RAG+ consistently outperforms standard RAG variants, achieving average improvements of 3-5%, and peak gains up to 7.5% in complex scenarios. By bridging retrieval with actionable application, RAG+ advances a more cognitively grounded framework for knowledge integration, representing a step toward more interpretable and capable LLMs.
Abstract:Large language models (LLMs) have demonstrated remarkable performance on various medical benchmarks, but their capabilities across different cognitive levels remain underexplored. Inspired by Bloom's Taxonomy, we propose a multi-cognitive-level evaluation framework for assessing LLMs in the medical domain in this study. The framework integrates existing medical datasets and introduces tasks targeting three cognitive levels: preliminary knowledge grasp, comprehensive knowledge application, and scenario-based problem solving. Using this framework, we systematically evaluate state-of-the-art general and medical LLMs from six prominent families: Llama, Qwen, Gemma, Phi, GPT, and DeepSeek. Our findings reveal a significant performance decline as cognitive complexity increases across evaluated models, with model size playing a more critical role in performance at higher cognitive levels. Our study highlights the need to enhance LLMs' medical capabilities at higher cognitive levels and provides insights for developing LLMs suited to real-world medical applications.
Abstract:Large Language Models (LLMs) have demonstrated remarkable capabilities in code generation, capable of tackling complex tasks during inference. However, the extent to which LLMs can be utilized for code checking or debugging through test case generation remains largely unexplored. We investigate this problem from the perspective of competition-level programming (CP) programs and propose TCGBench, a Benchmark for (LLM generation of) Test Case Generators. This benchmark comprises two tasks, aimed at studying the capabilities of LLMs in (1) generating valid test case generators for a given CP problem, and further (2) generating targeted test case generators that expose bugs in human-written code. Experimental results indicate that while state-of-the-art LLMs can generate valid test case generators in most cases, most LLMs struggle to generate targeted test cases that reveal flaws in human code effectively. Especially, even advanced reasoning models (e.g., o3-mini) fall significantly short of human performance in the task of generating targeted generators. Furthermore, we construct a high-quality, manually curated dataset of instructions for generating targeted generators. Analysis demonstrates that the performance of LLMs can be enhanced with the aid of this dataset, by both prompting and fine-tuning.
Abstract:Heterogeneous graph neural networks (HGNNs) have demonstrated their superiority in exploiting auxiliary information for recommendation tasks. However, graphs constructed using meta-paths in HGNNs are usually too dense and contain a large number of noise edges. The propagation mechanism of HGNNs propagates even small amounts of noise in a graph to distant neighboring nodes, thereby affecting numerous node embeddings. To address this limitation, we introduce a novel model, named Masked Contrastive Learning (MCL), to enhance recommendation robustness to noise. MCL employs a random masking strategy to augment the graph via meta-paths, reducing node sensitivity to specific neighbors and bolstering embedding robustness. Furthermore, MCL employs contrastive cross-view on a Heterogeneous Information Network (HIN) from two perspectives: one-hop neighbors and meta-path neighbors. This approach acquires embeddings capturing both local and high-order structures simultaneously for recommendation. Empirical evaluations on three real-world datasets confirm the superiority of our approach over existing recommendation methods.
Abstract:Parameter-Efficient Fine-Tuning (PEFT) methods, particularly Low-Rank Adaptation (LoRA), are indispensable for efficiently customizing Large Language Models (LLMs). However, vanilla LoRA suffers from slow convergence speed and knowledge forgetting problems. Recent studies have leveraged the power of designed LoRA initialization, to enhance the fine-tuning efficiency, or to preserve knowledge in the pre-trained LLM. However, none of these works can address the two cases at the same time. To this end, we introduce Subspace-Constrained LoRA (SC-LoRA), a novel LoRA initialization framework engineered to navigate the trade-off between efficient fine-tuning and knowledge preservation. We achieve this by constraining the output of trainable LoRA adapters in a low-rank subspace, where the context information of fine-tuning data is most preserved while the context information of preserved knowledge is least retained, in a balanced way. Such constraint enables the trainable weights to primarily focus on the main features of fine-tuning data while avoiding damaging the preserved knowledge features. We provide theoretical analysis on our method, and conduct extensive experiments including safety preservation and world knowledge preservation, on various downstream tasks. In our experiments, SC-LoRA succeeds in delivering superior fine-tuning performance while markedly diminishing knowledge forgetting, surpassing contemporary LoRA initialization methods.
Abstract:We propose ReinFlow, a simple yet effective online reinforcement learning (RL) framework that fine-tunes a family of flow matching policies for continuous robotic control. Derived from rigorous RL theory, ReinFlow injects learnable noise into a flow policy's deterministic path, converting the flow into a discrete-time Markov Process for exact and straightforward likelihood computation. This conversion facilitates exploration and ensures training stability, enabling ReinFlow to fine-tune diverse flow model variants, including Rectified Flow [35] and Shortcut Models [19], particularly at very few or even one denoising step. We benchmark ReinFlow in representative locomotion and manipulation tasks, including long-horizon planning with visual input and sparse reward. The episode reward of Rectified Flow policies obtained an average net growth of 135.36% after fine-tuning in challenging legged locomotion tasks while saving denoising steps and 82.63% of wall time compared to state-of-the-art diffusion RL fine-tuning method DPPO [43]. The success rate of the Shortcut Model policies in state and visual manipulation tasks achieved an average net increase of 40.34% after fine-tuning with ReinFlow at four or even one denoising step, whose performance is comparable to fine-tuned DDIM policies while saving computation time for an average of 23.20%. Project webpage: https://reinflow.github.io/
Abstract:Continual learning is rapidly emerging as a key focus in computer vision, aiming to develop AI systems capable of continuous improvement, thereby enhancing their value and practicality in diverse real-world applications. In healthcare, continual learning holds great promise for continuously acquired digital pathology data, which is collected in hospitals on a daily basis. However, panoramic segmentation on digital whole slide images (WSIs) presents significant challenges, as it is often infeasible to obtain comprehensive annotations for all potential objects, spanning from coarse structures (e.g., regions and unit objects) to fine structures (e.g., cells). This results in temporally and partially annotated data, posing a major challenge in developing a holistic segmentation framework. Moreover, an ideal segmentation model should incorporate new phenotypes, unseen diseases, and diverse populations, making this task even more complex. In this paper, we introduce a novel and unified Incremental Relationship-guided Segmentation (IRS) learning scheme to address temporally acquired, partially annotated data while maintaining out-of-distribution (OOD) continual learning capacity in digital pathology. The key innovation of IRS lies in its ability to realize a new spatial-temporal OOD continual learning paradigm by mathematically modeling anatomical relationships between existing and newly introduced classes through a simple incremental universal proposition matrix. Experimental results demonstrate that the IRS method effectively handles the multi-scale nature of pathological segmentation, enabling precise kidney segmentation across various structures (regions, units, and cells) as well as OOD disease lesions at multiple magnifications. This capability significantly enhances domain generalization, making IRS a robust approach for real-world digital pathology applications.