Since the emergence of large language models, prompt learning has become a popular method for optimizing and customizing these models. Special prompts, such as Chain-of-Thought, have even revealed previously unknown reasoning capabilities within these models. However, the progress of discovering effective prompts has been slow, driving a desire for general prompt optimization methods. Unfortunately, few existing prompt learning methods satisfy the criteria of being truly "general", i.e., automatic, discrete, black-box, gradient-free, and interpretable all at once. In this paper, we introduce metaheuristics, a branch of discrete non-convex optimization methods with over 100 options, as a promising approach to prompt learning. Within our paradigm, we test six typical methods: hill climbing, simulated annealing, genetic algorithms with/without crossover, tabu search, and harmony search, demonstrating their effectiveness in black-box prompt learning and Chain-of-Thought prompt tuning. Furthermore, we show that these methods can be used to discover more human-understandable prompts that were previously unknown, opening the door to a cornucopia of possibilities in prompt optimization. We release all the codes in \url{https://github.com/research4pan/Plum}.
The integration of visual inputs with large language models (LLMs) has led to remarkable advancements in multi-modal capabilities, giving rise to visual large language models (VLLMs). However, effectively harnessing VLLMs for intricate visual perception tasks remains a challenge. In this paper, we present a novel end-to-end framework named PerceptionGPT, which efficiently and effectively equips the VLLMs with visual perception abilities by leveraging the representation power of LLMs' token embedding. Our proposed method treats the token embedding of the LLM as the carrier of spatial information, then leverage lightweight visual task encoders and decoders to perform visual perception tasks (e.g., detection, segmentation). Our approach significantly alleviates the training difficulty suffered by previous approaches that formulate the visual outputs as discrete tokens, and enables achieving superior performance with fewer trainable parameters, less training data and shorted training time. Moreover, as only one token embedding is required to decode the visual outputs, the resulting sequence length during inference is significantly reduced. Consequently, our approach enables accurate and flexible representations, seamless integration of visual perception tasks, and efficient handling of a multiple of visual outputs. We validate the effectiveness and efficiency of our approach through extensive experiments. The results demonstrate significant improvements over previous methods with much fewer trainable parameters and GPU hours, which facilitates future research in enabling LLMs with visual perception abilities.
Large language models (LLMs), such as ChatGPT/GPT-4, have proven to be powerful tools in promoting the user experience as an AI assistant. The continuous works are proposing multi-modal large language models (MLLM), empowering LLMs with the ability to sense multiple modality inputs through constructing a joint semantic space (e.g. visual-text space). Though significant success was achieved in LLMs and MLLMs, exploring LLMs and MLLMs in domain-specific applications that required domain-specific knowledge and expertise has been less conducted, especially for \textbf{marine domain}. Different from general-purpose MLLMs, the marine-specific MLLM is required to yield much more \textbf{sensitive}, \textbf{informative}, and \textbf{scientific} responses. In this work, we demonstrate that the existing MLLMs optimized on huge amounts of readily available general-purpose training data show a minimal ability to understand domain-specific intents and then generate informative and satisfactory responses. To address these issues, we propose \textbf{MarineGPT}, the first vision-language model specially designed for the marine domain, unlocking the secrets of the ocean to the public. We present our \textbf{Marine-5M} dataset with more than 5 million marine image-text pairs to inject domain-specific marine knowledge into our model and achieve better marine vision and language alignment. Our MarineGPT not only pushes the boundaries of marine understanding to the general public but also offers a standard protocol for adapting a general-purpose assistant to downstream domain-specific experts. We pave the way for a wide range of marine applications while setting valuable data and pre-trained models for future research in both academic and industrial communities.
Existing sentence ordering approaches generally employ encoder-decoder frameworks with the pointer net to recover the coherence by recurrently predicting each sentence step-by-step. Such an autoregressive manner only leverages unilateral dependencies during decoding and cannot fully explore the semantic dependency between sentences for ordering. To overcome these limitations, in this paper, we propose a novel Non-Autoregressive Ordering Network, dubbed \textit{NAON}, which explores bilateral dependencies between sentences and predicts the sentence for each position in parallel. We claim that the non-autoregressive manner is not just applicable but also particularly suitable to the sentence ordering task because of two peculiar characteristics of the task: 1) each generation target is in deterministic length, and 2) the sentences and positions should match exclusively. Furthermore, to address the repetition issue of the naive non-autoregressive Transformer, we introduce an exclusive loss to constrain the exclusiveness between positions and sentences. To verify the effectiveness of the proposed model, we conduct extensive experiments on several common-used datasets and the experimental results show that our method outperforms all the autoregressive approaches and yields competitive performance compared with the state-of-the-arts. The codes are available at: \url{https://github.com/steven640pixel/nonautoregressive-sentence-ordering}.
Foundation models, including Vision Language Models (VLMs) and Large Language Models (LLMs), possess the $generality$ to handle diverse distributions and tasks, which stems from their extensive pre-training datasets. The fine-tuning of foundation models is a common practice to enhance task performance or align the model's behavior with human expectations, allowing them to gain $speciality$. However, the small datasets used for fine-tuning may not adequately cover the diverse distributions and tasks encountered during pre-training. Consequently, the pursuit of speciality during fine-tuning can lead to a loss of {generality} in the model, which is related to catastrophic forgetting (CF) in deep learning. In this study, we demonstrate this phenomenon in both VLMs and LLMs. For instance, fine-tuning VLMs like CLIP on ImageNet results in a loss of generality in handling diverse distributions, and fine-tuning LLMs like Galactica in the medical domain leads to a loss in following instructions and common sense. To address the trade-off between the speciality and generality, we investigate multiple regularization methods from continual learning, the weight averaging method (Wise-FT) from out-of-distributional (OOD) generalization, which interpolates parameters between pre-trained and fine-tuned models, and parameter-efficient fine-tuning methods like Low-Rank Adaptation (LoRA). Our findings show that both continual learning and Wise-ft methods effectively mitigate the loss of generality, with Wise-FT exhibiting the strongest performance in balancing speciality and generality.
The target of dynamic prediction is to provide individualized risk predictions over time which can be updated as new data become available. Motivated by establishing a dynamic prediction model for the progressive eye disease, age-related macular degeneration (AMD), we proposed a time-dependent Cox model-based survival neural network (tdCoxSNN) to predict its progression on a continuous time scale using longitudinal fundus images. tdCoxSNN extends the time-dependent Cox model by utilizing a neural network to model the non-linear effect of the time-dependent covariates on the survival outcome. Additionally, by incorporating the convolutional neural network (CNN), tdCoxSNN can take the longitudinal raw images as input. We evaluate and compare our proposed method with joint modeling and landmarking approaches through comprehensive simulations using two time-dependent accuracy metrics, the Brier Score and dynamic AUC. We applied the proposed approach to two real datasets. One is a large AMD study, the Age-Related Eye Disease Study (AREDS), in which more than 50,000 fundus images were captured over a period of 12 years for more than 4,000 participants. Another is a public dataset of the primary biliary cirrhosis (PBC) disease, in which multiple lab tests were longitudinally collected to predict the time-to-liver transplant. Our approach achieves satisfactory prediction performance in both simulation studies and the two real data analyses. tdCoxSNN was implemented in PyTorch, Tensorflow, and R-Tensorflow.
Large foundation models have demonstrated a great ability to achieve general human-level intelligence far beyond traditional approaches. As the technique keeps attracting attention from the AI community, more and more large foundation models have become publically available. However, most of those models exhibit a major deficiency in specialized-task applications, where the step of finetuning is still required for obtaining satisfactory performance. As the number of available models and specialized tasks keeps growing, the job of general finetuning becomes highly nontrivial. In this paper, we take the first step to address this issue. We introduce an extensible and lightweight toolkit, LMFlow, which aims to simplify the finetuning and inference of general large foundation models. LMFlow offers a complete finetuning workflow for a large foundation model to support personalized training with limited computing resources. Furthermore, it supports continuous pretraining, instruction tuning, parameter-efficient finetuning, alignment tuning, and large model inference, along with carefully designed and extensible APIs. This toolkit has been thoroughly tested and is available at https://github.com/OptimalScale/LMFlow.
In recent years, the field of computer vision has seen significant advancements thanks to the development of large language models (LLMs). These models have enabled more effective and sophisticated interactions between humans and machines, paving the way for novel techniques that blur the lines between human and machine intelligence. In this paper, we introduce a new paradigm for object detection that we call reasoning-based object detection. Unlike conventional object detection methods that rely on specific object names, our approach enables users to interact with the system using natural language instructions, allowing for a higher level of interactivity. Our proposed method, called DetGPT, leverages state-of-the-art multi-modal models and open-vocabulary object detectors to perform reasoning within the context of the user's instructions and the visual scene. This enables DetGPT to automatically locate the object of interest based on the user's expressed desires, even if the object is not explicitly mentioned. For instance, if a user expresses a desire for a cold beverage, DetGPT can analyze the image, identify a fridge, and use its knowledge of typical fridge contents to locate the beverage. This flexibility makes our system applicable across a wide range of fields, from robotics and automation to autonomous driving. Overall, our proposed paradigm and DetGPT demonstrate the potential for more sophisticated and intuitive interactions between humans and machines. We hope that our proposed paradigm and approach will provide inspiration to the community and open the door to more interative and versatile object detection systems. Our project page is launched at detgpt.github.io.
Generative foundation models are susceptible to implicit biases that can arise from extensive unsupervised training data. Such biases can produce suboptimal samples, skewed outcomes, and unfairness, with potentially significant repercussions. Consequently, aligning these models with human ethics and preferences is an essential step toward ensuring their responsible and effective deployment in real-world applications. Prior research has primarily employed Reinforcement Learning from Human Feedback (RLHF) as a means of addressing this problem, wherein generative models are fine-tuned using RL algorithms guided by a human-feedback-informed reward model. However, the inefficiencies and instabilities associated with RL algorithms frequently present substantial obstacles to the successful alignment of generative models, necessitating the development of a more robust and streamlined approach. To this end, we introduce a new framework, Reward rAnked FineTuning (RAFT), designed to align generative models more effectively. Utilizing a reward model and a sufficient number of samples, our approach selects the high-quality samples, discarding those that exhibit undesired behavior, and subsequently assembles a streaming dataset. This dataset serves as the basis for aligning the generative model and can be employed under both offline and online settings. Notably, the sample generation process within RAFT is gradient-free, rendering it compatible with black-box generators. Through extensive experiments, we demonstrate that our proposed algorithm exhibits strong performance in the context of both large language models and diffusion models.
Foundation models or pre-trained models have substantially improved the performance of various language, vision, and vision-language understanding tasks. However, existing foundation models can only perform the best in one type of tasks, namely language, vision, or vision-language. It is still an open question whether it is possible to construct a foundation model performing the best for all the understanding tasks, which we call a general foundation model. In this paper, we propose a new general foundation model, X-FM (the X-Foundation Model). X-FM has one language encoder, one vision encoder, and one fusion encoder, as well as a new training method. The training method includes two new techniques for learning X-FM from text, image, and image-text pair data. One is to stop gradients from the vision-language training when learning the language encoder. The other is to leverage the vision-language training to guide the learning of the vision encoder. Extensive experiments on benchmark datasets show that X-FM can significantly outperform existing general foundation models and perform better than or comparable to existing foundation models specifically for language, vision, or vision-language understanding.