Alert button
Picture for Xiyue Wang

Xiyue Wang

Alert button

Domain generalization across tumor types, laboratories, and species -- insights from the 2022 edition of the Mitosis Domain Generalization Challenge

Add code
Bookmark button
Alert button
Sep 27, 2023
Marc Aubreville, Nikolas Stathonikos, Taryn A. Donovan, Robert Klopfleisch, Jonathan Ganz, Jonas Ammeling, Frauke Wilm, Mitko Veta, Samir Jabari, Markus Eckstein, Jonas Annuscheit, Christian Krumnow, Engin Bozaba, Sercan Cayir, Hongyan Gu, Xiang 'Anthony' Chen, Mostafa Jahanifar, Adam Shephard, Satoshi Kondo, Satoshi Kasai, Sujatha Kotte, VG Saipradeep, Maxime W. Lafarge, Viktor H. Koelzer, Ziyue Wang, Yongbing Zhang, Sen Yang, Xiyue Wang, Katharina Breininger, Christof A. Bertram

Figure 1 for Domain generalization across tumor types, laboratories, and species -- insights from the 2022 edition of the Mitosis Domain Generalization Challenge
Figure 2 for Domain generalization across tumor types, laboratories, and species -- insights from the 2022 edition of the Mitosis Domain Generalization Challenge
Figure 3 for Domain generalization across tumor types, laboratories, and species -- insights from the 2022 edition of the Mitosis Domain Generalization Challenge
Figure 4 for Domain generalization across tumor types, laboratories, and species -- insights from the 2022 edition of the Mitosis Domain Generalization Challenge
Viaarxiv icon

Why is the winner the best?

Add code
Bookmark button
Alert button
Mar 30, 2023
Matthias Eisenmann, Annika Reinke, Vivienn Weru, Minu Dietlinde Tizabi, Fabian Isensee, Tim J. Adler, Sharib Ali, Vincent Andrearczyk, Marc Aubreville, Ujjwal Baid, Spyridon Bakas, Niranjan Balu, Sophia Bano, Jorge Bernal, Sebastian Bodenstedt, Alessandro Casella, Veronika Cheplygina, Marie Daum, Marleen de Bruijne, Adrien Depeursinge, Reuben Dorent, Jan Egger, David G. Ellis, Sandy Engelhardt, Melanie Ganz, Noha Ghatwary, Gabriel Girard, Patrick Godau, Anubha Gupta, Lasse Hansen, Kanako Harada, Mattias Heinrich, Nicholas Heller, Alessa Hering, Arnaud Huaulmé, Pierre Jannin, Ali Emre Kavur, Oldřich Kodym, Michal Kozubek, Jianning Li, Hongwei Li, Jun Ma, Carlos Martín-Isla, Bjoern Menze, Alison Noble, Valentin Oreiller, Nicolas Padoy, Sarthak Pati, Kelly Payette, Tim Rädsch, Jonathan Rafael-Patiño, Vivek Singh Bawa, Stefanie Speidel, Carole H. Sudre, Kimberlin van Wijnen, Martin Wagner, Donglai Wei, Amine Yamlahi, Moi Hoon Yap, Chun Yuan, Maximilian Zenk, Aneeq Zia, David Zimmerer, Dogu Baran Aydogan, Binod Bhattarai, Louise Bloch, Raphael Brüngel, Jihoon Cho, Chanyeol Choi, Qi Dou, Ivan Ezhov, Christoph M. Friedrich, Clifton Fuller, Rebati Raman Gaire, Adrian Galdran, Álvaro García Faura, Maria Grammatikopoulou, SeulGi Hong, Mostafa Jahanifar, Ikbeom Jang, Abdolrahim Kadkhodamohammadi, Inha Kang, Florian Kofler, Satoshi Kondo, Hugo Kuijf, Mingxing Li, Minh Huan Luu, Tomaž Martinčič, Pedro Morais, Mohamed A. Naser, Bruno Oliveira, David Owen, Subeen Pang, Jinah Park, Sung-Hong Park, Szymon Płotka, Elodie Puybareau, Nasir Rajpoot, Kanghyun Ryu, Numan Saeed, Adam Shephard, Pengcheng Shi, Dejan Štepec, Ronast Subedi, Guillaume Tochon, Helena R. Torres, Helene Urien, João L. Vilaça, Kareem Abdul Wahid, Haojie Wang, Jiacheng Wang, Liansheng Wang, Xiyue Wang, Benedikt Wiestler, Marek Wodzinski, Fangfang Xia, Juanying Xie, Zhiwei Xiong, Sen Yang, Yanwu Yang, Zixuan Zhao, Klaus Maier-Hein, Paul F. Jäger, Annette Kopp-Schneider, Lena Maier-Hein

Figure 1 for Why is the winner the best?
Figure 2 for Why is the winner the best?
Figure 3 for Why is the winner the best?
Figure 4 for Why is the winner the best?
Viaarxiv icon

CoNIC Challenge: Pushing the Frontiers of Nuclear Detection, Segmentation, Classification and Counting

Add code
Bookmark button
Alert button
Mar 14, 2023
Simon Graham, Quoc Dang Vu, Mostafa Jahanifar, Martin Weigert, Uwe Schmidt, Wenhua Zhang, Jun Zhang, Sen Yang, Jinxi Xiang, Xiyue Wang, Josef Lorenz Rumberger, Elias Baumann, Peter Hirsch, Lihao Liu, Chenyang Hong, Angelica I. Aviles-Rivero, Ayushi Jain, Heeyoung Ahn, Yiyu Hong, Hussam Azzuni, Min Xu, Mohammad Yaqub, Marie-Claire Blache, Benoît Piégu, Bertrand Vernay, Tim Scherr, Moritz Böhland, Katharina Löffler, Jiachen Li, Weiqin Ying, Chixin Wang, Dagmar Kainmueller, Carola-Bibiane Schönlieb, Shuolin Liu, Dhairya Talsania, Yughender Meda, Prakash Mishra, Muhammad Ridzuan, Oliver Neumann, Marcel P. Schilling, Markus Reischl, Ralf Mikut, Banban Huang, Hsiang-Chin Chien, Ching-Ping Wang, Chia-Yen Lee, Hong-Kun Lin, Zaiyi Liu, Xipeng Pan, Chu Han, Jijun Cheng, Muhammad Dawood, Srijay Deshpande, Raja Muhammad Saad Bashir, Adam Shephard, Pedro Costa, João D. Nunes, Aurélio Campilho, Jaime S. Cardoso, Hrishikesh P S, Densen Puthussery, Devika R G, Jiji C V, Ye Zhang, Zijie Fang, Zhifan Lin, Yongbing Zhang, Chunhui Lin, Liukun Zhang, Lijian Mao, Min Wu, Vi Thi-Tuong Vo, Soo-Hyung Kim, Taebum Lee, Satoshi Kondo, Satoshi Kasai, Pranay Dumbhare, Vedant Phuse, Yash Dubey, Ankush Jamthikar, Trinh Thi Le Vuong, Jin Tae Kwak, Dorsa Ziaei, Hyun Jung, Tianyi Miao, David Snead, Shan E Ahmed Raza, Fayyaz Minhas, Nasir M. Rajpoot

Figure 1 for CoNIC Challenge: Pushing the Frontiers of Nuclear Detection, Segmentation, Classification and Counting
Figure 2 for CoNIC Challenge: Pushing the Frontiers of Nuclear Detection, Segmentation, Classification and Counting
Figure 3 for CoNIC Challenge: Pushing the Frontiers of Nuclear Detection, Segmentation, Classification and Counting
Figure 4 for CoNIC Challenge: Pushing the Frontiers of Nuclear Detection, Segmentation, Classification and Counting
Viaarxiv icon

Federated contrastive learning models for prostate cancer diagnosis and Gleason grading

Add code
Bookmark button
Alert button
Feb 17, 2023
Fei Kong, Jinxi Xiang, Xiyue Wang, Xinran Wang, Meng Yue, Jun Zhang, Sen Yang, Junhan Zhao, Xiao Han, Yuhan Dong, Yueping Liu

Figure 1 for Federated contrastive learning models for prostate cancer diagnosis and Gleason grading
Figure 2 for Federated contrastive learning models for prostate cancer diagnosis and Gleason grading
Figure 3 for Federated contrastive learning models for prostate cancer diagnosis and Gleason grading
Figure 4 for Federated contrastive learning models for prostate cancer diagnosis and Gleason grading
Viaarxiv icon

Artificial intelligence for diagnosing and predicting survival of patients with renal cell carcinoma: Retrospective multi-center study

Add code
Bookmark button
Alert button
Jan 12, 2023
Siteng Chen, Xiyue Wang, Jun Zhang, Liren Jiang, Ning Zhang, Feng Gao, Wei Yang, Jinxi Xiang, Sen Yang, Junhua Zheng, Xiao Han

Figure 1 for Artificial intelligence for diagnosing and predicting survival of patients with renal cell carcinoma: Retrospective multi-center study
Figure 2 for Artificial intelligence for diagnosing and predicting survival of patients with renal cell carcinoma: Retrospective multi-center study
Figure 3 for Artificial intelligence for diagnosing and predicting survival of patients with renal cell carcinoma: Retrospective multi-center study
Figure 4 for Artificial intelligence for diagnosing and predicting survival of patients with renal cell carcinoma: Retrospective multi-center study
Viaarxiv icon

DeepNoise: Disentanglement of Experimental Noise from Real Biological Signals based on Fluorescent Microscopy Image Classification via Deep Learning

Add code
Bookmark button
Alert button
Sep 13, 2022
Sen Yang, Tao Shen, Yuqi Fang, Xiyue Wang, Jun Zhang, Wei Yang, Junzhou Huang, Xiao Han

Figure 1 for DeepNoise: Disentanglement of Experimental Noise from Real Biological Signals based on Fluorescent Microscopy Image Classification via Deep Learning
Figure 2 for DeepNoise: Disentanglement of Experimental Noise from Real Biological Signals based on Fluorescent Microscopy Image Classification via Deep Learning
Figure 3 for DeepNoise: Disentanglement of Experimental Noise from Real Biological Signals based on Fluorescent Microscopy Image Classification via Deep Learning
Figure 4 for DeepNoise: Disentanglement of Experimental Noise from Real Biological Signals based on Fluorescent Microscopy Image Classification via Deep Learning
Viaarxiv icon

Dual Skipping Guidance for Document Retrieval with Learned Sparse Representations

Add code
Bookmark button
Alert button
Apr 23, 2022
Yifan Qiao, Yingrui Yang, Haixin Lin, Tianbo Xiong, Xiyue Wang, Tao Yang

Figure 1 for Dual Skipping Guidance for Document Retrieval with Learned Sparse Representations
Figure 2 for Dual Skipping Guidance for Document Retrieval with Learned Sparse Representations
Figure 3 for Dual Skipping Guidance for Document Retrieval with Learned Sparse Representations
Figure 4 for Dual Skipping Guidance for Document Retrieval with Learned Sparse Representations
Viaarxiv icon

Pan-cancer computational histopathology reveals tumor mutational burden status through weakly-supervised deep learning

Add code
Bookmark button
Alert button
Apr 07, 2022
Siteng Chen, Jinxi Xiang, Xiyue Wang, Jun Zhang, Sen Yang, Junzhou Huang, Wei Yang, Junhua Zheng, Xiao Han

Figure 1 for Pan-cancer computational histopathology reveals tumor mutational burden status through weakly-supervised deep learning
Figure 2 for Pan-cancer computational histopathology reveals tumor mutational burden status through weakly-supervised deep learning
Figure 3 for Pan-cancer computational histopathology reveals tumor mutational burden status through weakly-supervised deep learning
Figure 4 for Pan-cancer computational histopathology reveals tumor mutational burden status through weakly-supervised deep learning
Viaarxiv icon

Mitosis domain generalization in histopathology images -- The MIDOG challenge

Add code
Bookmark button
Alert button
Apr 06, 2022
Marc Aubreville, Nikolas Stathonikos, Christof A. Bertram, Robert Klopleisch, Natalie ter Hoeve, Francesco Ciompi, Frauke Wilm, Christian Marzahl, Taryn A. Donovan, Andreas Maier, Jack Breen, Nishant Ravikumar, Youjin Chung, Jinah Park, Ramin Nateghi, Fattaneh Pourakpour, Rutger H. J. Fick, Saima Ben Hadj, Mostafa Jahanifar, Nasir Rajpoot, Jakob Dexl, Thomas Wittenberg, Satoshi Kondo, Maxime W. Lafarge, Viktor H. Koelzer, Jingtang Liang, Yubo Wang, Xi Long, Jingxin Liu, Salar Razavi, April Khademi, Sen Yang, Xiyue Wang, Mitko Veta, Katharina Breininger

Figure 1 for Mitosis domain generalization in histopathology images -- The MIDOG challenge
Figure 2 for Mitosis domain generalization in histopathology images -- The MIDOG challenge
Figure 3 for Mitosis domain generalization in histopathology images -- The MIDOG challenge
Figure 4 for Mitosis domain generalization in histopathology images -- The MIDOG challenge
Viaarxiv icon